Return to search

Effects of the invasive annual grass Lolium multiflorum Lam. on the growth and physiology of a Southern African Mediterranean-climate geophyte Tritonia crocata (L.) Ker. Gawl. under different resource conditions / J.L. Arnolds

Little is known of the physiological and biochemical mechanisms underlying competitive interactions between alien invasive grasses and native taxa, and how these are affected by resource supply. Consequently, this study compared photosystem II (PS II) function, photosynthetic gas and water exchange, enzyme and pigment concentrations, flowering and biomass accumulation in an indigenous geophyte, Tritonia crocata (L.) Ker. Gawl., grown in monoculture and admixed with the alien grass, Lolium multiflorum Lam., at different levels of water and nutrient supply. Diminished stomatal conductances were the primary cause of reduced net C02 assimilation rates, and consequent biomass accumulation in T. crocata admixed with L. multiflorum at all levels of water and nutrient supply with one exception. These corresponded with decreased soil water contents induced presumably by more efficient competition for water by L. multiflorum, whose biomass was inversely correlated with soil water content. Biochemical impairments to photosynthesis were also apparent in T. crocata admixed with L. multiflorum at low levels of water and nutrient supply. These included a decline in the density of working photosystems (reaction center per chlorophyll RC/ABS), which corresponded with a decreased leaf chlorophyll a content and a decreased efficiency of conversion of excitation energy to electron transport (¥0 / l-^o), pointing to a reduction in electron transport capacity beyond QA~, a decline in apparent carboxylation efficiency and Rubisco content. At low nutrient levels but high water supply, non-stomatal induced biochemical impairments to photosynthesis (decreased RC/ABS, chlorophyll a and Rubisco content) were apparent in T. crocata admixed with L. multiflorum. These attributed to a reallocation of fixed carbohydrate reserves to floral production which increased significantly in T. crocata under these conditions only and associated with a corresponding reduction in the mass of its underground storage organ (bulb). The results of this study did not support the hypothesis that under conditions of low water and low nutrient supply invasive annual grasses would have a lesser impact on the growth and physiology of native geophytes than under resource enriched conditions that favor growth of these grasses. Unresolved is whether resource limitation and allelopathic mechanisms functioned simultaneously in the inhibition of the native geophyte by the alien grass. / Thesis (M. Environmental Science (Ecological Remediation and Sustainable Utilisation))--North-West University, Potchefstroom Campus, 2008.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nwu/oai:dspace.nwu.ac.za:10394/1603
Date January 2007
CreatorsArnolds, Judith Lize
PublisherNorth-West University
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds