Return to search

A Trust-based Message Evaluation and Propagation Framework in Vehicular Ad-Hoc Networks

In this paper, we propose a trust-based message propagation and evaluation framework to support the effective evaluation of information sent by peers and the immediate control of false information in a VANET. More specifically, our trust-based message propagation collects peers’ trust opinions about a message sent by a peer (message sender) during the propagation of the message. We improve on an existing cluster-based data routing mechanism by employing a secure and efficient identity-based aggregation scheme for the aggregation and propagation of the sender’s message and the trust opinions. These trust opinions weighted by the trustworthiness of the peers modeled using a combination of role-based and experience-based trust metrics are used by cluster leaders to compute a ma jority opinion about the sender’s message, in order to proactively detect false information. Malicious messages are dropped and controlled to a local minimum without further affecting other peers. Our trust-based message evaluation allows each peer to evaluate the trustworthiness of the message by also taking into account other peers’ trust opinions about the message and the peer-to-peer trust of these peers. The result of the evaluation derives an effective action decision for the peer.



We evaluate our framework in simulations of real life traffic scenarios by employing real maps with vehicle entities following traffic rules and road limits. Some entities involved in the simulations are possibly malicious and may send false information to mislead others or spread spam messages to jam the network. Experimental results demonstrate that our framework significantly improves network scalability by reducing the utilization of wireless bandwidth caused by a large number of malicious messages. Our system is also demonstrated to be effective in mitigating against malicious messages and protecting peers from being affected. Thus, our framework is particularly valuable in the deployment of VANETs by achieving a high level of scalability and effectiveness.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/4929
Date January 2009
CreatorsChen, Chen
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0018 seconds