Return to search

Enabling IoV Communication through Secure Decentralized Clustering using Federated Deep Reinforcement Learning

The Internet of Vehicles (IoV) holds immense potential for revolutionizing transporta- tion systems by facilitating seamless vehicle-to-vehicle and vehicle-to-infrastructure communication. However, challenges such as congestion, pollution, and security per- sist, particularly in rural areas with limited infrastructure. Existing centralized solu- tions are impractical in such environments due to latency and privacy concerns. To address these challenges, we propose a decentralized clustering algorithm enhanced with Federated Deep Reinforcement Learning (FDRL). Our approach enables low- latency communication, competitive packet delivery ratios, and cluster stability while preserving data privacy. Additionally, we introduce a trust-based security framework for IoV environments, integrating a central authority and trust engine to establish se- cure communication and interaction among vehicles and infrastructure components. Through these innovations, we contribute to safer, more efficient, and trustworthy IoV deployments, paving the way for widespread adoption and realizing the transfor- mative potential of IoV technologies.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5954
Date01 August 2024
CreatorsScott, Chandler
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsChandler Scott

Page generated in 0.0017 seconds