Des événements géologiques passés ont montré que les glissements de terrain, près des côtes, impliquant des volumes de quelques milliers de mètre cube à plusieurs centaines de kilomètres cube, peuvent provoquer des vagues de tsunami d’une amplitude considérable. La vague générée et l’effondrement représentent tous deux un danger important pour la population et les infrastructures situées sur ou proche des côtes. Une modélisation réaliste nécessite de tenir compte de la nature granulaire du glissement de terrain. Nous avons développé dans ce travail de thèse, une série d’expériences de laboratoire à petite échelle, pour étudier en détail le processus de génération de vague par l’effondrement d’une colonne granulaire, initialement sèche, dans l’eau. Tout un ensemble de paramètres est testé : (1) la masse granulaire impliquée (hauteur, volume, rapport d’aspect, granulométrie et densité), (2) la hauteur d’eau et (3) la configuration géométrique (plan horizontal ou plan incliné). Des expériences quasi-bidimensionnelle en canal rectangulaire, permettent d’enregistrer à la fois l’évolution temporelle de l’effondrement granulaire et celle de la surface libre de l’eau. Nous montrons que le processus de génération des vagues est piloté par la dynamique collective de l’effondrement des grains à la surface de l’eau. Nous identifions une dépendance linéaire claire entre l’amplitude relative de la vague principale et un nombre de Froude défini comme le rapport des vitesses d’avancée du front granulaire et de la vague solitaire. En particulier, l’amplitude de la vague atteint sa valeur maximale pour une profondeur d’eau intermédiaire. Le transfert d’énergie global a montré que seulement quelques pourcents de l’énergie potentielle initiale de la colonne sont transférés à la vague, issus notamment d’une perte d’énergie considérable dans l’effondrement granulaire lui-même. Enfin, nous soulignons la faible influence du diamètre et de la masse volumique des grains dans la génération de la vague. Cela suggère que la masse de l’effondrement est de faible importance par rapport à son volume. Un autre résultat intéressant est la dépendance linéaire de l’amplitude relative de la vague avec le volume immergé du dépôt final. Cette loi nous permet d’estimer l’amplitude de la vague pour des événements passés et potentiels. Malgré les échelles, géométries diverses et variées de ces événements, et l’incertitude des données, cette loi empirique provenant de notre expérience à petite échelle prédit des vagues similaires à d’autres modèles numériques ou expérimentaux. / Various past geological events have shown that landslides near coastlines, involving volumes from a few thousand cubic meters to several cubic kilometers, can lead to tsunami waves with significant amplitude. The generated wave and the collapse both represent an important hazard for the population and infrastructure located on or near the coast. Realistic modeling requires considering the granular nature of landslides. Here, we developed a new set of small-scale laboratory experiments to investigate in detail the wave generated by the collapse of an aerial granular column into water. An entire set of parameters are tested: (1) the falling granular mass (height, volume, aspect ratio, grain size and density), (2) the water layer height and (3) the geometrical configuration (horizontal or inclined plane). From quasi-bidimensional experiments in a rectangular channel we record both the time evolution of the granular collapse and of the generated wave. We show that the wave generation process is driven by the collective dynamics of the granular collapse at the water free surface. We identify a clear linear dependence between the relative wave amplitude and a Froude number defined as the ratio of the granular front velocity and the solitary wave velocity. The wave amplitude reaches its maximum value at an intermediate water depth. The total energy transfer shows that only a few percent of the initial potential energy of the column is transferred to the wave, suggesting a considerable energy loss in the granular collapse itself. Finally, we highlight the low influence diameter and density of the falling grain in the generation of the wave. This suggests that the mass of the collapse is of low importance compared to its volume. Another interesting result is the linear dependence of the relative wave amplitude with the relative immersed volume of the final deposit. This allows us to estimate the wave amplitude generated by past or potential events in Nature. Despite the various scales and geometries of these natural events, and the uncertainty of the data, our empirical law, from our small-scale experiment, predicts waves similar to other numerical or experimental models.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLS497 |
Date | 06 December 2019 |
Creators | Robbe-Saule, Manon |
Contributors | Paris Saclay, Gondret, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds