Return to search

Modélisation statistique et segmentation d'images TEP : application à l'hétérogénéité et au suivi de tumeurs / Statistical model and segmentation of PET images : application to tumor heterogeneity and tracking

Cette thèse étudie le traitement statistique des images TEP. Plus particulièrement, la distribution binomiale négative est proposée pour modéliser l’activité d’une région mono-tissulaire. Cette représentation a l’avantage de pouvoir prendre en compte les variations d’activité biologique (ou hétérogénéité) d’un même tissu. A partir de ces résultats, il est proposé de modéliser la distribution de l’image TEP entière comme un mélange spatialement cohérent de lois binomiales négatives. Des méthodes Bayésiennes sont considérées pour la segmentation d’images TEP et l’estimation conjointe des paramètres du modèle. La cohérence spatiale inhérente aux tissus biologiques est modélisée par un champ aléatoire de Potts-Markov pour représenter la dépendance locale entre les composantes du mélange. Un algorithme original de Monte Carlo par Chaîne de Markov (MCMC) est utilisé, faisant appel aux notions d’échantillonnage dans un espace Riemannien et d’opérateurs proximaux. L’approche proposée est appliquée avec succès à la segmentation de tumeurs en imagerie TEP. Cette méthode est ensuite étendue d’une part en intégrant au processus de segmentation des informations anatomiques acquises par tomodensitométrie (TDM), et d’autre part en traitant une série temporelle d’images correspondant aux différentes phases de respiration. Un modèle de mélange de distributions bivariées binomiale négative - normale est proposé pour représenter les images dynamiques TEP et TDM fusionnées. Un modèle Bayésien hiérarchique a été élaboré comprenant un champ de Potts-Markov à quatre dimensions pour respecter la cohérence spatiale et temporelle des images PET-TDM dynamiques. Le modèle proposé montre une bonne qualité d’ajustement aux données et les résultats de segmentation obtenus sont visuellement en concordance avec les structures anatomiques et permettent la délimitation et le suivi de la tumeur. / This thesis studies statistical image processing of PET images. More specifically, the negative binomial distribution is proposed to model the activity of a single tissue. This representation has the advantage to take into account the variations of biological activity (or heterogeneity) within a single tissue. Based on this, it is proposed to model the data of the entire PET image as a spatially coherent finite mixture of negative binomial distributions. Bayesian methods are considered to jointly perform the segmentation and estimate the model parameters. The inherent spatial coherence of the biological tissue is modeled by a Potts-Markov random field to represent the local dependence between the components of the mixture. An original Markov Chain Monte Carlo (MCMC) algorithm is proposed, based on sampling in a Riemannian space and proximal operators. The proposed approach is successfully applied to the segmentation of tumors in PET imaging. This method is further extended by incorporating anatomical information acquired by computed tomography (CT) and processing a time series of images corresponding to the phases of respiration. A mixture model of bivariate negative binomial - normal distributions is proposed to represent the dynamic PET and CT fused images. A hierarchical Bayesian model was developed including a four dimensional Potts-Markov field to enforce the spatiotemporal coherence of dynamic PET-CT images. The proposed model shows a good fit to the data and the segmentation results obtained are visually consistent with the anatomical structures and allow accurate tumor delineation and tracking.

Identiferoai:union.ndltd.org:theses.fr/2014INPT0086
Date08 October 2014
CreatorsIrace, Zacharie
ContributorsToulouse, INPT, Batatia, Hadj, Ayache, Alain
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds