Return to search

Relationship between tumor necrosis factor-alpha and beta-adrenergic receptors in cultured rat astrocytes.

by Keung Ka Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 163-184). / Abstracts in English and Chinese. / Abstract --- p.ii / 摘要 --- p.iv / Acknowledgements --- p.vi / Table of Contents --- p.vii / List of Abbreviations --- p.xiv / List of Tables --- p.xvi / List of Figures --- p.xvi / Chapter CHAPTER 1. --- INTRODUCTION / Chapter 1.1. --- Events happened after brain injury --- p.1 / Chapter 1.2. --- Glial cells --- p.3 / Chapter 1.2.1. --- Microglia --- p.4 / Chapter 1.2.2. --- Oligodendrocytes --- p.5 / Chapter 1.2.3. --- Astrocytes --- p.5 / Chapter 1.2.3.1. --- Uptake of neurotransmitters --- p.7 / Chapter 1.2.3.2. --- Maintenance of extracellular homeostasis --- p.8 / Chapter 1.2.3.3. --- Induction of blood-brain-barrier --- p.8 / Chapter 1.2.3.4. --- Guidance of migrating neurons during development --- p.9 / Chapter 1.2.3.5. --- Immunocompetent cells of the brain --- p.9 / Chapter 1.2.3.6. --- Contribution to astrogliosis --- p.10 / Chapter 1.3. --- Cytokines and astrogliosis --- p.11 / Chapter 1.3.1. --- IL-6 and astrogliosis --- p.12 / Chapter 1.3.2. --- IL-1 and astrogliosis --- p.13 / Chapter 1.3.3. --- IFN-γ and astrogliosis --- p.14 / Chapter 1.3.4. --- TNF-α and astrogliosis --- p.14 / Chapter 1.3.4.1. --- General properties of TNF-α --- p.15 / Chapter 1.3.4.2. --- TNF receptors (TNFRs) --- p.17 / Chapter 1.3.4.3. --- NFkB induction --- p.18 / Chapter 1.3.4.4. --- Intermediate early genes --- p.19 / Chapter 1.3.4.5. --- iNOS is the target of NFkB and AP-1 --- p.20 / Chapter 1.4. --- β-Adrenergic receptors (P-ARs) --- p.21 / Chapter 1.4.1. --- β-ARs and astrogliosis --- p.22 / Chapter 1.4.2. --- General properties of β-ARs --- p.23 / Chapter 1.4.3. --- Interactions between β-adrenergic mechanism and TNF-α --- p.24 / Chapter 1.5. --- Aims and scopes of the project --- p.25 / Chapter CHAPTER 2. --- MATERIALS & METHODS / Chapter 2.1. --- Materials --- p.29 / Chapter 2.1.1. --- Rats for astrocyte culture --- p.29 / Chapter 2.1.2. --- Cell culture materials --- p.29 / Chapter 2.1.2.1. --- Complete Dulbecco's Modified Eagle Medium:F12 (DF12) --- p.29 / Chapter 2.1.2.2. --- Phosphate buffered saline (PBS) --- p.30 / Chapter 2.1.3. --- Drugs preparation --- p.30 / Chapter 2.1.3.1. --- Recombinant cytokines --- p.30 / Chapter 2.1.3.2. --- Modulators of protein kinase A (PKA) --- p.30 / Chapter 2.1.3.3. --- Modulators of protein kinase C (PKC) --- p.31 / Chapter 2.1.3.4. --- β-Agonists and -antagonists --- p.31 / Chapter 2.1.3.5. --- Antibodies used in western blot analysis --- p.31 / Chapter 2.1.4. --- Reagents for cell proliferation determination --- p.32 / Chapter 2.1.5. --- Reagents for RNA isolation --- p.32 / Chapter 2.1.6. --- Reagents for reverse transcription-polymerase chain reaction (RT-PCR) --- p.32 / Chapter 2.1.7. --- Reagents for Electrophoresis --- p.33 / Chapter 2.1.8. --- Reagents and buffers for western blotting --- p.35 / Chapter 2.2. --- Methods --- p.36 / Chapter 2.2.1. --- Preparation of primary astrocytes --- p.36 / Chapter 2.2.2. --- Preparation of cells for assays --- p.36 / Chapter 2.2.3. --- Determination of cell proliferation --- p.36 / Chapter 2.2.3.1. --- [3H]-Thymidine incorporation assay --- p.37 / Chapter 2.2.3.2. --- MTT assay --- p.37 / Chapter 2.2.3.3. --- Data analysis --- p.38 / Chapter 2.2.4. --- Determination of RNA expression by RT-PCR analysis --- p.38 / Chapter 2.2.4.1. --- RNA extraction --- p.38 / Chapter 2.2.4.2. --- Spectrophotometric Quantitation of DNA and RNA --- p.38 / Chapter 2.2.4.3. --- RNA gel electrophoresis --- p.39 / Chapter 2.2.4.4. --- Reverse transcription-polymerase chain reaction (RT-PCR) --- p.39 / Chapter 2.2.4.5. --- Separation of PCR products by agarose gel electrophoresis --- p.40 / Chapter 2.2.4.6. --- Quantification of band density --- p.41 / Chapter 2.2.5. --- Determination of protein expression by Western blotting --- p.41 / Chapter 2.2.5.1. --- Total protein extraction --- p.41 / Chapter 2.2.5.2. --- Western blotting analysis --- p.42 / Chapter CHAPTER 3. --- RESULTS / Chapter 3.1. --- Effects of pro-inflammatory cytokines on astrocyte proliferation --- p.43 / Chapter 3.1.1. --- Effects of TNF-α on astrocyte proliferation --- p.44 / Chapter 3.1.2. --- Effects of TNF-R1 and -R2 antibodies on astrocyte proliferation --- p.47 / Chapter 3.1.3. --- Effects of other cytokines on astrocyte proliferation --- p.50 / Chapter 3.1.4. --- Comparisons of the effects of cytokines on astrocyte proliferation --- p.53 / Chapter 3.2. --- Effects of β-agonist and -antagonist on astrocyte proliferation --- p.55 / Chapter 3.3. --- Effects of TNF-α on the expression of TNFR and endogenous TNF-α in astrocytes --- p.60 / Chapter 3.3.1. --- Effects of TNF-α on the expression of TNF-R1 and -R2 in astrocytes --- p.60 / Chapter 3.3.1.1. --- Effects of TNF-α on the expression of TNF-R1 and -R2 mRNA --- p.60 / Chapter 3.3.1.2. --- TNFR subtypes involved in the TNF-α-induced TNF-R2 mRNA expression --- p.62 / Chapter 3.3.1.3. --- Signaling pathways of the TNF-α-induced TNF-R2 mRNA expression --- p.67 / Chapter 3.3.1.4. --- Effects of TNF-α on the expression of TNF-R1 and -R2 --- p.68 / Chapter 3.3.2. --- Effects of TNF-α on the expression of endogenous TNF-α in astrocytes --- p.73 / Chapter 3.3.2.1. --- Effects of TNF-α on the expression of TNF-α mRNA --- p.73 / Chapter 3.3.2.2. --- TNFR subtypes involved in the TNF-α-induced TNF-α mRNA expression --- p.73 / Chapter 3.3.2.3. --- Signaling pathways of the TNF-α-induced TNF-α mRNA expression --- p.74 / Chapter 3.3.2.4. --- Effects of other cytokines on the expression of TNF-α mRNA --- p.75 / Chapter 3.4. --- Effects of TNF-α on the expression of β1- and β2-AR in astrocytes --- p.85 / Chapter 3.4.1. --- Effects of TNF-α on the expression of β1- and β2-AR mRNA --- p.85 / Chapter 3.4.2. --- TNFR subtypes involved in the TNF-a-induced β1 and β2-AR mRNA expressions --- p.88 / Chapter 3.4.3. --- Signaling pathways of the TNF-α -induced β1- and β2-AR mRNA expressions --- p.88 / Chapter 3.4.4. --- Effects of TNF-α on the expression of β1- and β2-AR protein --- p.100 / Chapter 3.4.5. --- Effects of other cytokines on the expression of β1- and β2-AR mRNA --- p.100 / Chapter 3.5. --- Interactions between TNF-α and β-adrenergic mechanism in astrocytes --- p.107 / Chapter 3.5.1. --- Effects of β-agonists and -antagonists on the TNF-α-induced endogenous TNF-α expression in astrocytes --- p.107 / Chapter 3.5.1.1. --- Effects of ISO and PROP on the expression of TNF-α mRNA --- p.107 / Chapter 3.5.1.2. --- β-AR subtypes involved in the TNF-α-induced TNF-α mRNA expression --- p.108 / Chapter 3.5.2. --- Effects of β-agonists and -antagonists on the TNF-α-induced TNFRs expression in astrocytes --- p.112 / Chapter 3.5.2.1. --- Effects of ISO and PROP on the expression of TNFRs mRNA --- p.112 / Chapter 3.5.2.2. --- β-AR subtypes involved in the TNF-α-induced TNF-R2 mRNA expression --- p.115 / Chapter 3.6. --- Effects of TNF-α on the expression of transcription factors in astrocytes --- p.117 / Chapter 3.6.1. --- "Effects of TNF-α on c-fos, c-jun and NFKB/p50 expression" --- p.118 / Chapter 3.6.2. --- Effects of other cytokines on the expression of NFKB/p50 mRNA --- p.119 / Chapter 3.6.3. --- "TNFR subtypes involved in the TNF-α-induced c-fos, c-jun and NFKB/p50 mRNA expression" --- p.125 / Chapter 3.7. --- Effects of TNF-α on the expression of iNOS in astrocytes --- p.130 / Chapter 3.7.1. --- Effects ofTNF-α the expression of iNOS mRNA --- p.130 / Chapter 3.7.2. --- TNFR subtypes involved in the TNF-α-induced iNOS mRNA expression --- p.131 / Chapter 3.7.3. --- Signaling pathways of the TNF-α-induced iNOS mRNA expression --- p.136 / Chapter 3.7.4. --- Effects of other cytokines on the expression of iNOS mRNA --- p.139 / Chapter 3.7.5. --- Effects of β-agonists and -antagonists on the TNF-α-induced iNOS expression --- p.142 / Chapter 3.7.5.1. --- Effects of ISO and PROP on the expression of iNOS mRNA --- p.142 / Chapter 3.7.5.2. --- β-AR subtypes involved in the TNF-α-induced iNOS mRNA expression --- p.143 / Chapter CHAPTER 4. --- DISCUSSIONS & CONCLUSIONS / Chapter 4.1. --- Effects of TNF-α on astrocyte proliferation --- p.148 / Chapter 4.2. --- Roles of endogenous TNF-α and TNFR in astrocyte proliferation --- p.150 / Chapter 4.3. --- Interactions between TNF-α and β-adrenergic mechanism in astrocytes --- p.154 / Chapter 4.4. --- Induction of transcription factors by TNF-α in astrocytes --- p.157 / Chapter 4.5. --- Possible source of β-agonists --- p.159 / Chapter 4.6. --- Conclusions --- p.160 / REFERENCE --- p.163

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324247
Date January 2003
ContributorsKeung, Ka Man., Chinese University of Hong Kong Graduate School. Division of Biochemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxii, 184 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.002 seconds