Return to search

The Roles of RasGAP SH3 Domain Binding Proteins (G3BPs) in RNA Metabolism, the Cellular Stress Response and Tumorigenesis

G3BP1 and G3BP2 are members of a highly conserved family of multi-functional RNA binding proteins, which appear to co-ordinate signal transduction and post-transcriptional gene regulation. Both proteins are over-expressed in cancer, and G3BP1 promotes cell proliferation and survival. Aberrant expression of various RNA binding proteins is common in cancer, and several of these proteins influence tumorigenesis. Therefore, detailed examination of RNA binding proteins, such as G3BPs, may provide insights into the post-transcriptional mechanisms underlying tumorigenesis. Tumours arise as a consequence of genetic mutation or alteration, which often result from stress-induced DNA damage. Cancer progression is facilitated by various epigenetic stress adaptation mechanisms. Stressful stimuli induce transitory translational shut-off, mediated by phosphorylation of eukaryotic initiation factor alpha;(eIF2alpha;). This phosphorylation event leads to formation of discrete cytoplasmic foci known as stress granules (SGs), which are translationally-silent sites of mRNA sorting. It was initially thought that an RNA-binding protein, T-cell internal antigen 1 (TIA-1), was instrumental in both the formation and functioning of SGs, because over-expression of TIA-1 induces spontaneous SGs and concomitantly causes a decrease in reporter gene expression. It is now clear that SG content can change depending on the type of stress, and that various proteins, including G3BP1, can induce spontaneous SGs. In vitro evidence previously implicated both G3BP1 and G3BP2 as endoribonucleases, so it was suggested that G3BPs act to target mRNA for decay at the SG. This project sought to further investigate this proposal, and in this way gain insight into the specific function of G3BPs in post-transcriptional regulation during tumorigenesis. Characterisation of G3BP1 and G3BP2 expression and localisation patterns in human cells and cancer was necessary before functional analyses in human cell systems could be undertaken. Both proteins were found to be over-expressed in breast cancer, irrespective of cancer stage or grade. G3BP1 and G3BP2 were also expressed in all human cell lines tested, despite previously observed tissue-specific expression. These results support the notion that G3BP expression is switched on in parallel with cell proliferation, and as such, may influence tumorigenesis. The results of further analyses suggested that the diverse functions attributed to G3BP1 and G3BP2 may be facilitated by isoform-specific expression, various post-translational modifications and sub-cellular localisation. Despite the absence of a canonical endoribonuclease domain, it was previously reported that site-specific phosphorylation of G3BP1 enables the protein to degrade a synthetic c-myc RNA substrate in vitro. This finding implicated G3BP in the specific regulation of a proto-oncogene. Tailored reporter assays were thus designed in order to address the in vivo consequences of G3BP's putative endoribonuclease activity. Contrary to expectations, all G3BP family members increased or maintained the expression of a range of reporters, at both the mRNA and protein level, irrespective of the presence of any particular cis-acting element, coding sequence or promoter. These results support the emerging notion that G3BPs positively affect the expression of at least some of their target mRNAs, and may also indirectly promote transcription. In contrast to the theory that G3BPs degrade proto-oncogenic mRNA/s, these findings are consistent with a role for G3BP in promoting cell proliferation and survival. Further analyses showed that G3BP1 and G3BP2 simultaneously increased reporter gene expression and induced SG formation. These findings highlighted the fact that SGs are dynamic sorting stations for mRNAs, and not merely sites of stalled translation. This result also supports the notion that a variety of proteins may be recruited to the SG to facilitate a multitude of mRNA fates. Although the precise role of the SG in stress adapation is not known, it is clear that an appropriate integrated stress response (ISR) is required for cells to survive in sub-optimal conditions. It was found that specific G3BP1 knockdown inhibited SG formation and cell survival, and this appeared to occur downstream of eIF2alpha; phosphorylation. The phosphorylation of eIFalpha; is the only factor known to be necessary for SG formation and cell survival. This data is the first to implicate SG formation itself, downstream of eIF2alpha; phosphorylation, in the survival phase of the ISR. The results also suggest that G3BP1 plays a pivotal role in the post-transcriptional mechanisms underlying stress adaptation. To facilitate future analysis of G3BP roles in the regulation of specific transcripts and in SG biology, a pilot study to identify G3BP RNA ligands was undertaken. Immunoprecipitation of epitope-tagged G3BP1 from stable cell lines facilitated purification and isolation of RNA in association with G3BP1. Specific RNA transcripts were subsequently detected and identified by microarray. Many genes were enriched in the G3BP1 immunoprecipitate. Transcript enrichment in the control immunoprecipitate was comparatively weak and seemingly random, suggesting that several replicates will enable generation of a reliable target list. This work forms a promising basis for further investigations into G3BP functionality, and also provides a platform for broader and more large-scale analyses of the mechanisms of post-transcriptional gene regulation. The work presented in this thesis addressed the potential post-transcriptional mechanisms by which the G3BP family of proteins mediate cell proliferation and survival. Both G3BP1 and G3BP2 were shown to be over-expressed in tumours and each appeared to promote reporter gene expression. G3BP1 was also found to play a pivotal role in stress adaptation. A technique to identify novel RNA ligands was assessed, and it was found that G3BP1 may interact with various mRNA transcripts. It is hypothesised that the G3BP family of proteins, and in particular G3BP1, function to determine the fate of specific RNAs in response to cellular stress and other stimuli. In this way, G3BP proteins may facilitate appropriate responses to extra-cellular stimuli which allow for cell proliferation and survival.

Identiferoai:union.ndltd.org:ADTP/195504
Date January 2006
CreatorsStirling, Susan Renee, n/a
PublisherGriffith University. School of Biomolecular and Biomedical Science
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.gu.edu.au/disclaimer.html), Copyright Susan Renee Stirling

Page generated in 0.0023 seconds