Return to search

Designing synthetic bacterial-viral interactions: Salmonella launches, and controls engineered picornaviruses

In the twenty-first century, advances in synthetic biology and molecular tools to implement programmable behavior into microbes have fueled significant efforts to develop microbial-based therapeutics. Bacteria and viruses have been explored independently for their ability to replicate and induce cytotoxic effects in cancer cells selectively.

This dissertation aims to co-opt the anti-tumor capabilities of gram-negative Salmonella enterica subspecies enterica serotype Typhimurium (referred to as Salmonella typhimurium moving forward) and picornaviruses (small RNA viruses with positive sense genomes) to develop a potent, single bacterial-viral consortium- based system to treat solid tumors.I first describe our efforts to co-opt S. typhimurium’s natural internalization into hosts and intracellular space-sensing to deliver self-amplifying picornaviral RNA. Protein effectors that promote intracellular survival of S. typhimurium within the Salmonella-Containing-Vacuole (SCV) are transcribed by Salmonella Pathogenicity Island-2 (SPI-2) promoters, which turn on after sensing the intracellular pH, ion concentrations, and oxidative stressors. These effectors are then translocated into the host’s cytoplasm by a needle apparatus that connects the SCV and cytoplasm, which is also transcribed by SPI-2 promoters. By using the SPI-2 promoter PsseA to drive the expression of fluorescent reporters and membrane-disrupting proteins (eukaryotic and prokaryotic), efficient escape of Salmonella-produced proteins into tumor-host cells was established. RNA delivery into host cells was also made possible by a secondary SPI-2 promoter, PsseJ, which transcribes RNA polymerase T7 (T7), which then transcribes a T7-promoter-driven Poliovirus replicon or full-length Senecavirus A (SVA).

Inoculation of this engineered S. typhimurium strain on a panel of cancer cell lines identified the system’s ability to deliver viral replicons and full-length viruses in a small cell cancer cell line, H446. In a murine model, S. typhimurium delivery of SVA was then shown to clear xenografted H446 tumors. Motivated by the possibility of delivering other picornaviral species with similar anti-tumor properties, but documented healthy tissue cytotoxicity, S. typhimurium was further engineered to control SVA viral spread. By driving Tobacco Etch Virus (TEV) protease expression via a second SseA promoter, and replacing a natural cleavage site on SVA with the TEV-cleavage domain, we demonstrate TEV-dependent SVA spread in H446 cells.

I conclude with efforts on engineering TEV-dependent-SVA transgene expression to confer greater antitumor properties. Interferon-gamma and granulocyte-macrophage colony-stimulating factor (GM-CSF) have been reported to attenuate H446 growth in vitro. Expression of interferon-gamma off SVA would produce a direct selective pressure against viral replication and virion production. However, a fusion of human GM-CSF to Nano-Luciferase protein on the TEV-dependent SVA genome maintained luminescent signals, GM-CSF activity, and TEV-dependent spread, providing a framework to survey anti-tumor properties of SVA-transgenes. Furthermore, I address our development of syngeneic models for Salmonella-mediated delivery of SVA, an important step towards clinical applications of the system as immunocompetent models more closely correlate to immunocompetent patient populations. SVA’s efficient entry and replication in neuroendocrine-derived tissue identified murine neuroblastoma N1E-115 cells as a suitable cell line for SVA cytotoxicity studies. However, the ability of these cells to support bacterial-viral superinfections is unknown. Here, we show that Salmonella-mediated launch of SVA leads to viral spread that can attenuate heterologous hind flank tumor growth and improve their survival along with mice engrafted with orthotopic intracranial brain tumors.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/b04s-pa08
Date January 2024
CreatorsPabón, Jonathan
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0015 seconds