This research is for the implementation of non-intrusive measurement techniques in the study of high temperature pipe flow. A low pressure, laboratory scale hybrid rocket motor simulator was built to achieve high temperatures with various gases. A quartz test section was designed, built, and implemented into the existing test setup to accommodate the laser beam of the existing Tunable Diode Laser Absorption Spectrometer (TDLAS) system which was designed to observe water vapor. A super-heated water vapor injector was designed to obtain the desired water vapor concentrations. Flow characteristics were simultaneously recorded using the existing TDLAS system and the DAQ system for temperatures for later comparison. A numerical study using a commercial CFD package was used to predict the flow characteristics at certain locations for experimental comparison. Based on this study, it is concluded that the TDLAS can be used to make real time temperature measurements of heated internal gas flows.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2818 |
Date | 20 December 2013 |
Creators | Carleton, Wesley |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0016 seconds