This thesis tests the hypothesis that increased neuronal cell death in SIDS infants is related to the ability of risk factors, such as prone sleeping, to expose infants to intermittent hypercapnic hypoxia (IHH). Based on the hypothesis that the NMDA system is linked to neuronal death, by way of excitotoxicity, correlations were also sought between cell death and changes in NMDA receptor (NR1) expression in brainstem nuclei controlling cardiorespiratory function. The first aim of this study was to verify that increased neuronal cell death occurs in SIDS infants. To verify a piglet model of SIDS risk factors, brainstem changes were examined in piglets exposed to IHH, and comparisons were made to changes seen in SIDS infants. The NMDA receptor was characterised in controls for both the human infant and the piglet groups. Comparisons of neuronal changes were made with SIDS infants, and piglets exposed to IHH. Non-radioactive in-situ hybridisation and immunohistochemistry were performed on formalin fixed and paraffin embedded brainstem tissue to identify markers of cell death (caspase-3, active caspase-3, and TUNEL), and to examine NR1 mRNA and protein expressions. Staining was quantified using computerised image analysis software. Eight nuclei from the brainstem medulla (caudal in piglets, and mid in infants), and two nuclei from the rostral pons (infants) were studied. The first dataset included human infants aged 1-6 months with a diagnosis of SIDS (n=15) or non-SIDS (n=10). The second dataset comprised developing piglets aged 13-14 days, with controls (n=6), against those exposed to IHH for 2 (n=6) or 4 (n=5) days. Increased neuronal cell death was not verified in the SIDS infants, but abnormalities in NR1 expression were present in selected nuclei of the medulla. Piglets exposed to IHH had increased neuronal cell death and changes in NR1 in selected nuclei of the medulla. There was also a positive correlation between increased cell death and high NR1 levels. Preliminary data showed that SIDS infants who usually slept prone had some differences in NR1 compared to those who did not usually sleep prone. From these findings, it was concluded that IHH may underlie the abnormalities in NMDA receptor expression that are present in the brainstem of SIDS infants. Although IHH can induce an increase in neuronal cell death, its significance in the aetiology of SIDS is not known. In piglets, IHH induced cell death correlated with high NMDA expression in some brainstem nuclei, supporting the hypothesis that excitotoxicity may be involved in the mechanism for cell death. Moreover, this thesis presents for the first time, �preliminary pathological proof� of an association between prone sleeping and abnormal NMDA receptor expression in SIDS infants.
Identifer | oai:union.ndltd.org:ADTP/283031 |
Date | January 2003 |
Creators | Machaalani, Rita |
Publisher | University of Sydney. Medicine |
Source Sets | Australiasian Digital Theses Program |
Language | English, en_AU |
Detected Language | English |
Rights | Copyright Machaalani, Rita;http://www.library.usyd.edu.au/copyright.html |
Page generated in 0.002 seconds