Return to search

Design of Apoferritin-Based Nanoparticle MRI Contrast Agents Through Controlled Metal Deposition

abstract: Sensitivity is a fundamental challenge for in vivo molecular magnetic resonance imaging (MRI). Here, I improve the sensitivity of metal nanoparticle contrast agents by strategically incorporating pure and doped metal oxides in the nanoparticle core, forming a soluble, monodisperse, contrast agent with adjustable T2 or T1 relaxivity (r2 or r1). I first developed a simplified technique to incorporate iron oxides in apoferritin to form "magnetoferritin" for nM-level detection with T2- and T2* weighting. I then explored whether the crystal could be chemically modified to form a particle with high r1. I first adsorbed Mn2+ ions to metal binding sites in the apoferritin pores. The strategic placement of metal ions near sites of water exchange and within the crystal oxide enhance r1, suggesting a mechanism for increasing relaxivity in porous nanoparticle agents. However, the Mn2+ addition was only possible when the particle was simultaneously filled with an iron oxide, resulting in a particle with a high r1 but also a high r2 and making them undetectable with conventional T1-weighting techniques. To solve this problem and decrease the particle r2 for more sensitive detection, I chemically doped the nanoparticles with tungsten to form a disordered W-Fe oxide composite in the apoferritin core. This configuration formed a particle with a r1 of 4,870mM-1s-1 and r2 of 9,076mM-1s-1. These relaxivities allowed the detection of concentrations ranging from 20nM - 400nM in vivo, both passively injected and targeted to the kidney glomerulus. I further developed an MRI acquisition technique to distinguish particles based on r2/r1, and show that three nanoparticles of similar size can be distinguished in vitro and in vivo with MRI. This work forms the basis for a new, highly flexible inorganic approach to design nanoparticle contrast agents for molecular MRI. / Dissertation/Thesis / Ph.D. Bioengineering 2012

Identiferoai:union.ndltd.org:asu.edu/item:15999
Date January 2012
ContributorsClavijo Jordan, Maria Veronica (Author), Bennett, Kevin M (Advisor), Kodibagkar, Vikram (Committee member), Sherry, A Dean (Committee member), Wang, Xiao (Committee member), Yarger, Jeffery (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format144 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds