Backscatter communication enables wireless communication at a power consumption orders of magnitude lower than conventional wireless communication. Instead of generating new RF-signals backscatter communication leverages ambient signals, such as WiFi-, Bluetooth- or TV-signals, and reflects them by changing the impedance of the antenna. Backscatter communication is known as a short-range communication technique achieving ranges in the order of meters. To improve the communication range, we explore the use of a tunnel diode as an amplifier of the backscattered RF-signal. We developed the amplifier on a PCB-board together with a matching network tuned to give maximum gain at 868 MHz. Our work demonstrates that the 1N3712 tunnel diode can achieve gains up to 35 dB compared to a tag without amplification while having a peak power consumption of 48 μW. With this amplifier the communication distance can be increased by up to two orders of magnitude.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-354901 |
Date | January 2018 |
Creators | Eriksson, Gustav |
Publisher | Uppsala universitet, Fasta tillståndets elektronik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC F, 1401-5757 ; 18039 |
Page generated in 0.0021 seconds