Return to search

FullMonte: Fast Biophotonic Simulations

Modeling of light propagation through turbid (highly-scattering) media such as living tissue is important for a number of medical applications including diagnostics and therapeutics. This thesis studies methods of performing such simulations quickly and accurately. It begins with a formal definition of the problem, a review of solution methods, and an overview of the current state of the art in fast simulation methods encompassing both traditional software and more specialized hardware acceleration approaches (GPU, custom logic). It introduces FullMonte, the fastest mesh-based Monte Carlo software model available and highlights its novel optimiza-
tions. Additionally, it demonstrates the first fully three-dimensional hardware simulator using Field-Programmable Gate Array (FPGA) custom logic, offering large (40x) power-efficiency and performance (3x) gains. Next, a plan for significant future feature enhancements and performance scale-out is sketched out. Lastly, it proposes applying the simulators developed to a number of problems relevant to current clinical and research practice.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/44004
Date17 March 2014
CreatorsCassidy, Jeffrey
ContributorsBetz, Vaughn, Lilge, Lothar
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0016 seconds