Return to search

Modélisation des turbomachines : Dérivation d’un modèle phénoménologique de combustion pour la simulation de transitoires sur hélicoptères / Gas Turbine Modelling : Combustion Model Derivation for Rotorcraft Transient Operation

Ce travail propose l’investigation d’une approche physique 0D/1D modélisant les brûleurs de turbines à gaz, prenant en compte l’évaporation du carburant, la turbulence, la combustion, et permet la représentation de zones de dilution et l’implémentation de modèles de chimie des polluants. Il s’agit de sous-modèles répartis dans des composants assemblables dans un environnement numérique multi-domaines basé sur le formalisme de Bond Graph. Ceci permet, par exemple, l’assemblage de plusieurs volumes ouverts en un tube à flamme, l’ajout d’un compresseur et d’une turbine, ou bien aussi d’intégrer des chaînes de commande afin de représenter un hélicoptère complet. L’originalité de cette thèse réside dans l’application d’un paradigme de combustion 0D, issu d’une approche 3D élaborée chez IFP Energies nouvelles et appliquée avec succès aux moteurs alternatifs ainsi qu’à des turbines à gaz. Le sous-modèle intègre le formalisme de flamme cohérente qui distingue une zone de gaz frais d’une zone de gaz brûlés. Les deux zones sont séparées par une flamme turbulente. Le sous-modèle de tube à flamme décrit la flamme grâce à une synthèse issue de résultats de calculs CFD 3D validés par des expériences. En effet, des résultats de calculs LES d’un brûleur expérimental monophasique ont étés analysés pour caractériser la combustion turbulente prémélangée dans un brûleur à tourbilloneur. Enfin, un secteur de brûleur réel de turbomoteur a été étudié à l’aide de simulations CFD afin d’évaluer la pertinence du modèle de tube à flamme 0D/1D et de guider la modélisation permettant de compléter la nouvelle approche de simulation système des turbines à gaz. / This work investigates a unique 0D/1D physical approach for gas turbine combustor modelling. It accounts for fuel evaporation, turbulence, combustion, and allows to represent dilution stages. Detailed pollutants formation models can also be added. The chosen formalism, based on the Bond Graph theory approach, allows to describe systems organised in a series of submodel components such as a series of open volumes forming a flame tube, or a combustor coupled to a compressor and turbine but they can also be combined with control and regulation devices in order to represent a complete rotorcraft. The essence of the PhD strategy is the application of a 0D combustion paradigm, obtained at IFP Energies nouvelles by formal reduction of 3D approaches for gas turbines. More in details, a new combustion model was developed integrating the Coherent Flame Model (CFM) formalism which allows to distinguish between fresh gases and burned gases separating them with a turbulent flame. The flame tube submodel features a physical description of the flame thanks to thorough understanding given by 3D CFD simulation results validated against experimental measurements. More specifically, LES results corresponding to a single phase test rig were analysed in order to characterise premixed turbulent combustion in a swirl burner. Finally, a real turboshaft combustor sector case was studied by means of CFD simulations to investigate the relevance of the 0D/1D flame tube model and to determine modelling strategies for the completion of the new gas turbine system simulation approach.

Identiferoai:union.ndltd.org:theses.fr/2017SACLC056
Date20 November 2017
CreatorsRehayem, Elias
ContributorsParis Saclay, Colin, Olivier, Dulbecco, Alessio
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0057 seconds