Return to search

Direct Numerical Simulation Of Pipe Flow Using A Solenoidal Spectral Method

In this study, which is numerical in nature, direct numerical simulation (DNS) of the pipe flow is performed. For the DNS a solenoidal spectral method is employed, this involves the expansion of the velocity using divergence free functions which also satisfy the prescribed boundary conditions, and a subsequent projection of the N-S equations onto the corresponding dual space. The solenoidal functions are formulated in Legendre polynomial space, which results in more favorable forms for the inner product integrals arising from the Petrov-Galerkin scheme employed. The developed numerical scheme is also used to investigate the effects of spanwise oscillations and phase randomization on turbulence statistics, and drag, in turbulent incompressible pipe flow for low to moderate Reynolds numbers (i.e. $mathrm{Re} sim 5000$) ).

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614293/index.pdf
Date01 June 2012
CreatorsTugluk, Ozan
ContributorsTarman, Hakan Isik
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.002 seconds