Numerical simulations of incompressible, two-dimensional, monochromatically and bichromatically forced laminar free shear layers are performed on the basis of a vorticity-velocity formulation of the complete Navier-Stokes equations employing central finite differences. Spatially periodic shear layers developing in time (temporal model) are compared with shear layers developing in the stream-wise direction (spatial model). The regimes of linear growth and saturation of the fundamental are quantitatively scrutinized, the saturation of the subharmonic and vortex merging are investigated, and the effects of a forcing phase-shift between fundamental and subharmonic. For the spatial model the appearance of an unforced subharmonic was also examined. It was found that contrary to temporal shear layers a significant control of vortex merging by means of a forcing phase-shift and vortex shredding are not possible in spatial shear layers due to strong dispersion.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/276871 |
Date | January 1988 |
Creators | Hipp, Hans Christoph, 1959- |
Contributors | Fasel, Hermann F. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0021 seconds