Return to search

PREDICTION OF PROTECTED-PERMISSIVE LEFT-TURN PHASING CRASHES BASED ON CONFLICT ANALYSIS

Left-turning maneuvers are considered to be the highest risk movements at intersections and two-thirds of the crashes associated with left-turns are reported at signalized intersections. Left-turning vehicles typically encounter conflicts from opposing through traffic. To separate conflicting movements, transportation agencies use a protected-only phase at signalized intersections where each movement is allowed to move alone. However, this could create delays and thus the concept of a protected-permissive phase has been introduced to balance safety and delays. However, the permissive part of this phasing scheme retains the safety concerns and could increase the possibility of conflicts resulting in crashes. This research developed a model that can predict the number of crashes for protected-permissive left-turn phasing, based on traffic volumes and calculated conflicts. A total of 103 intersections with permissive-protected left-turn phasing in Kentucky were simulated and their left-turn related conflicts were obtained from post processing vehicle trajectories through the Surrogate Safety Assessment Model (SSAM). Factors that could affect crash propensity were identified through the Principal Component Analysis in Negative Binomial Regression. Nomographs were developed from the models which can be used by traffic engineers in left-turn phasing decisions with enhanced safety considerations.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ce_etds-1065
Date01 January 2017
CreatorsSagar, Shraddha
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Civil Engineering

Page generated in 0.2343 seconds