Coherent control of laser induced processes is based on the quantum
interference among multiple excitation pathways. Progress in the field has been fueled
by advances in pulse shaping techniques, allowing modulation of phase and amplitude
across the bandwidth of ultra short pulses. This dissertation makes use of coherent
control technique for the optimization of two-photon fluorescence (TPF) and its
applications in selective excitation for biomedical imaging. Different physical processes,
e.g. TPF, second harmonic generation (SHG) and their ratios (e.g. TPF/SHG) were
optimized by using feedback control pulse shaping technique with an evolutionary
algorithm. Various nonlinear effects, e.g. filamentation, intensity clamping and white
light generation were studied using two-photon fluorescence and Z-scan technique with
different dyes and biomarkers. Simultaneous measurements of different nonlinear effects
were performed. Novel methods were proposed and implemented to obtain two-photon
excitation characteristics in intensity-resolved manner. Understanding of these nonlinear
effects can give new solution to the issues of spatial resolution and molecular contrast
for cellular and tissue imaging.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2009-08-7213 |
Date | 2009 August 1900 |
Creators | Poudel, Milan Prasad |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | application/pdf |
Page generated in 0.0017 seconds