The endocrine-like factor FGF21 is a potent regulator of nutrient metabolism. Systemic FGF21 administration to obese animals improves glucose tolerance, lowers blood glucose and triglycerides, and decreases fasting insulin levels. Although FGF21 improves the survival and function of islet β-cells, the mechanisms are currently unknown. This thesis examines mechanisms of FGF21 in the regulation of pancreatic islet metabolism. Biochemistry studies showed FGF21 decreased Acetyl-CoA carboxylase (ACC) and Uncoupling protein-2 (UCP2) protein expression in mouse islets. Autofluorescence microscopy showed difference in NAD(P)H responses when challenged with TCA cycle intermediate citrate. FGF21-treated islets showed significant decreased mitochondrial energetics when acutely stimulated with high concentrations of glucose and palmitate. This decrease in energetics correlated with increased generation of NADPH. Importantly, insulin secretion was lowered but not abolished in this state. These data confirm that FGF21 alters pancreatic islets metabolism during high glucose and high fat loading and reduces insulin during nutrient stress.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/31452 |
Date | 20 December 2011 |
Creators | Sun, Mark Yimeng |
Contributors | Rocheleau, Jonathan |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds