Salmonella enterica is an important cause of food poisoning and is responsible for approximately a billion human infections each year. Disease manifestation in humans varies from severe systemic enteric (typhoid) fever to self-limiting gastroenteritis depending upon the infecting S. enterica serovar. S. Typhimurium is responsible for acute gastroenteritis in humans but causes a typhoid-like disease in mice and thus serves as an important model for studying the pathogenesis of systemic salmonellosis. Following ingestion, S. Typhimurium employs a variety of virulence mechanisms to survive within its host and establishes infection in the intestinal tract by invading the epithelial cells. Recent studies have revealed the importance of sulfur compounds in the intestine, such as tetrathionate and thiosulfate for the disease progression. S. Typhimurium is capable of utilising these sulfur compounds as terminal electron acceptors for its anaerobic respiration and thus gains a growth advantage over host microbiota during infection. However, the regulation of sulfur availability within S. Typhimurium and the mechanisms involved in mitigating cellular sulfide toxicity are not well-defined. During this study, we have identified the sstRA operon in S. Typhimurium encoding a deduced SmtB/ArsR family of transcriptional regulatory protein (SstR) and a deduced rhodanese-family sulfurtransferase (SstA) and demonstrated a role in mitigating the effects of cellular sulfide toxicity. SstR has been confirmed to act as a transcriptional repressor from the sstRA operator-promoter and the SstR-dependent repression is alleviated by low pH and sulfide stress (sodium thiosulfate), consistent with a role for SstR in sensing sulfide stress to trigger gene expression. Electrophoretic mobility shift assays confirm binding of purified SstR to the sstRA operator-promoter region. Furthermore, a conserved pair of cysteine residues within SstR was identified to be crucial for alleviating SstR-mediated repression, with the substitution of either cysteine causing constitutive repression. This is consistent with SstR inducer-responsiveness involving a thiol-based redox switch. Importantly, S. Typhimurium mutants lacking the sstRA operon have reduced tolerance to sulfide stress, consistent with the sstRA operon having a role in cellular sulfide detoxification. Work is continuing to further characterise the roles of sstR and sstA in S. Typhimurium on their contributions to infections.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:719313 |
Date | January 2017 |
Creators | Ragupathy, Roobinidevi |
Contributors | Cavet, Jennifer |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0017 seconds