Return to search

Preimplantation genetic diagnosis : new methods for the detection of genetic abnormalities in human preimplantation embryos

Preimplantation genetic diagnosis (PGD) refers to the testing of embryos produced through in vitro fertilization (IVF) in order to identify those unaffected by a specific genetic disorder or chromosomal abnormality. In this study, different methodologies were examined and developed for performance of PGD. Investigation of various whole genome amplification (WGA) methods identified multiple displacement amplification as a reliable method for genotyping single cells. Furthermore, this technology was shown to be compatible with subsequent analysis using single nucleotide polymorphism (SNP) microarrays. Compared to conventional methods used in this study to perform single cell diagnosis (e.g. multiplex PCR), WGA techniques were found to be advantageous since they streamline the development of PGD protocols for couples at high risk of transmitting an inherited disorder and simultaneously offer the possibility of comprehensive chromosome screening (CCS). This study also aimed to develop a widely applicable protocol for accurate typing of the human leukocyte antigen (HLA) region with the purpose of identifying embryos that will be HLA-identical to an existing sibling affected by a disorder that requires haematopoietic stem cell transplantation. Additionally, a novel microarray platform was developed that, apart from accurate CCS, was capable of reliably determining the relative quantity of mitochondrial DNA in polar bodies removed from oocytes and single cells biopsied from embryos. Mitochondria are known to play an important role in oogenesis and preimplantation embryogenesis and their measurement may therefore be of clinical relevance. Moreover, real-time PCR was used for development of protocols for CCS, DNA fingerprinting of sperm samples and embryos and the relative quantitation of telomere length in embryos (since shortened telomeres might be associated with reduced viability). As well as considering the role of genetics in terms of oocyte and embryo viability assessment and the diagnosis of inherited genetic disorders, attention was given to a specific gene (Phospholipase C zeta) of relevance to male infertility. A novel mutation affecting the function of the resulting protein was discovered highlighting the growing importance of DNA sequence variants in the diagnosis and treatment of infertility.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:581249
Date January 2013
CreatorsKonstantinidis, Michalis
ContributorsWells, Dagan
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:28611f65-7729-4293-9c3f-4fc3f0cc39d7

Page generated in 0.0017 seconds