Using robots to navigate through un-mapped environments, specially man-made infrastructures, for the purpose of exploration or inspection is a topic that has gathered a lot of interest in the last years. Micro Aerial Vehicles (MAV's) have the mobility and agility to move quickly and access hard-to-reach areas where ground robots would fail, but using MAV's for that purpose comes with its own set of problems since any collision with the environment results in a crash. The control architecture used in a MAV for such a task needs to perform obstacle avoidance and on-line path-planning in an unknown environment with low computation times as to not lose stability. In this thesis a Non-linear Model Predictive Controller (NMPC) for obstacle avoidance and path-planning on an aerial platform will be established. Included are methods for constraining the available state-space, simulations of various obstacle avoidance scenarios for single and multiple MAVs and experimental validation of the proposed control architecture. The validity of the proposed approach is demonstrated through multiple experimental and simulation results. In these approaches, the positioning information of the obstacles and the MAV are provided by a motion-capture system. The thesis will conclude with the demonstration of an experimental validation of a centralized NMPC for collision avoidance of two MAV's.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-76212 |
Date | January 2019 |
Creators | Lindqvist, Björn |
Publisher | Luleå tekniska universitet, Rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds