This work demonstrates the use of genetic algorithms as a stochastic optimization technique for developing a camera network design and the flight path for photogrammetricapplications using Small Unmanned Aerial Vehicles. This study develops a Virtual Optimizer for Aerial Routes (VOAR) as a new photogrammetric mapping tool for acquisition of images to be used in 3D reconstruction. 3D point cloud models provide detailed information on infrastructure from places where human access may be difficult. This algorithm allows optimized flight paths to monitor infrastructure using GPS coordinates and optimized camera poses ensuring that the set of images captured is improved for 3D point cloud development. Combining optimization techniques, autonomous aircraft and computer vision methods is a new contribution that this work provides.This optimization framework is demonstrated in a real example that includes retrieving the coordinates of the analyzed area and generating autopilot coordinates to operate in fully autonomous mode. These results and their implications are discussed for future work and directions in making optical techniques competitive with aerial or ground based LiDAR systems.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6572 |
Date | 01 December 2014 |
Creators | Rojas, Ivan Yair |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0013 seconds