In this thesis we develop methods that facilitate an aerial rendezvous between two air vehicles. The objective of this research is to produce a method that can be used to insert a miniature air vehicle behind a rendezvous vehicle and then track that vehicle to enable a visual rendezvous. For this research we assume the rendezvous vehicle is following a relatively stable and roughly elliptical orbit. Path planners and controllers have been developed that can be used to effectively intercept the rendezvous vehicle by inserting the MAV onto the orbit of interest. A method for planning and following time-optimal Dubins airplane interception paths between a miniature air vehicle and the rendezvous vehicle is presented. We demonstrate how a vector field path following a scheme can be used for navigation along these time-optimal Dubins airplane paths. A post-orbit insertion tracking method is also presented which can be used to track the target vehicle on an arbitrarily oriented elliptical orbit while maintaining a specified following distance. We also present controllers that can be used for disturbance rejection during the orbit-insertion and interception operations. All of these methods were implemented in simulation and with hardware. Results from these implementations are presented and analyzed.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-3880 |
Date | 18 October 2011 |
Creators | Owen, Mark Andrew |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0017 seconds