Return to search

Implementation and evaluation of a 3D tracker / Implementation och utvärdering av en 3D tracker

Many methods have been developed for visual tracking of generic objects. The vast majority of these assume the world is two-dimensional, either ignoring the third dimension or only dealing with it indirectly. This causes difficulties for the tracker when the target approaches or moves away from the camera, is occluded or moves out of the camera frame. Unmanned aerial vehicles (UAVs) are increasingly used in civilian applications and some of these will undoubtedly carry tracking systems in the future. As they move around, these trackers will encounter both scale changes and occlusions. To improve the tracking performance in these cases, the third dimension should be taken into account. This thesis extends the capabilities of a 2D tracker to three dimensions, with the assumption that the target moves on a ground plane. The position of the tracker camera is established by matching the video it produces to a sparse point-cloud map built with off-the-shelf structure-from-motion software. A target is tracked with a generic 2D tracker and subsequently positioned on the ground. Should the target disappear from view, its motion on the ground is predicted. In combination, these simple techniques are shown to improve the robustness of a tracking system on a moving platform under target scale changes and occlusions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-111887
Date January 2014
CreatorsRobinson, Andreas
PublisherLinköpings universitet, Datorseende, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds