Semiconductor nanowires acts as an emerging class of materials with great potential for applications in future electronic devices. Small size, large surface to volume ratio and high carrier mobility of nanowires make them potentially useful for electronic applications with high integration density. In this thesis, the focus was on the growth of high quality ZnO nanowires, fabrication of field effect transistors and UV- photodetectros based on them. Intrinsic nanowire parameters such as carrier concentration, field effect mobility and resistivity were measured by configuring nanowires as field effect transistors. The main contribution of this thesis is the development of a high gain UV photodetector. A single ZnO nanowire functioning as a UV photodetector showed promising results with an extremely high spectral responsivity of 120 kA/W at wavelength of 370 nm. This corresponds to high photoconductive gain of 2150. To the best of our knowledge, this is the highest responsivity and gain reported so far, the previous values being responsivity=40 kA/W and gain=450. The enhanced photoconductive behavior is attributed to the presence of surface states that acts as hole traps which increase the life time of photogenerated electrons raising the photocurrent. This work provides the evidence of such solid states and preliminary results to modify the surface of ZnO nanowire is also produced.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc500106 |
Date | 05 1900 |
Creators | Mallampati, Bhargav |
Contributors | Philipose, Usha, Namuduri, Kamesh, Neogi, Arup |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Mallampati, Bhargav, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0021 seconds