Ultra Wide Band (UWB) is a short-pulse electrical signal, which is widely used for short distant wireless communication due to its low path loss, good immunity to multipath propagation, and high data rate. The main target transmission area of UWB is within 10 meters. Using optical fiber as carrier can bust up the communication capacitance in long distance range because of high capacitance, low loss propagation, and TDM and WDM compatible properties of fiber. Thereby, the technique of UWB on fiber has become more and more important. In this work, a novel method using waveguide photodetector (WP) with short termination for interface of optical fiber and wireless is proposed and demonstrated. The structure is simple without employing any complicated frequency mixer, intermediate frequency, or complex systems.
This work is divided into two parts: (1) generation of UWB electrical signals and (2) wavelength conversion of UWB through WP. In the former, a WP with short termination is used in the device. The photocurrent excited by short optical pulse is distributive generated through the waveguide, forming two opposite directions of electrical waves. By reflection on the short termination, the reversed phase of one electrical wave is added to another electrical wave through a delay line, forming a monocycle of UWB signal. By appropriate design on the length of waveguide, the band of 2-10GH is demonstrated, fitting the requirement of FCC (Federal Communications Commission).
In the second part of this paper is the wavelength conversion of UWB. The active region of WG is multiple quantum wells (M.Q.W.), which is not only served as photo-absorption layer, but also can be used the electroabsorption material. By pumping M.Q.W.s with high optical power, the cross absorption properties can be applied for wavelength conversion. By pumping power of 12dBm, the wavelength-converted UWB signal is successfully demonstrated at range of 1545nm-1570nm. Using this method, the application of UWB on router of fiber optical network is expectable.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0806108-105538 |
Date | 06 August 2008 |
Creators | Chou, Yi-fen |
Contributors | An-Kuo Chu, Yi-Jen Chiu, Chao-Kuei Lee, Tzyy-Sheng Horng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0806108-105538 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0021 seconds