L’IRM quantitative recouvre l’ensemble des méthodes permettant de mesurer des paramètres physiques accessibles en Résonance Magnétique Nucléaire. Elle offre un bénéfice par rapport à l’imagerie en pondération classiquement utilisée, notamment pour la détection, la caractérisation physiopathologique mais aussi pour le suivi thérapeutique des pathologies. Malgré ce potentiel avéré connu de longue date, ces méthodes restent peu utilisées dans la routine clinique. La raison principale est la longueur des acquisitions par rapport à l’approche classique. Les paramètres physiques que nous souhaitons étudier plus particulièrement sont le temps de relaxation longitudinal (T₁), transversal (T₂), le coefficient de diffusion apparent (ADC), et la densité de protons (DP). Malgré la possibilité d’atteindre une meilleure qualité d’images, ces cartographies in vivo sont quasiment inexistantes dans la littérature au-delà de 3T car leur implémentation nécessite de surmonter un certain nombre de limites spécifiques aux IRM ultra-haut champs (UHF). Au travers de ce projet de thèse, une méthode d’imagerie quantitative basée sur les états de configurations (QuICS) a été implémentée, pour déterminer ces paramètres quantitatifs de façon simultanée sous fortes contraintes propres aux UHF. L’approche a été optimisée dans le but d’obtenir des cartographies fiables et rapides. Le potentiel de la méthode a été démontré dans un premier temps in vitro sur un noyau tel que le sodium démontrant des propriétés complexes à cartographier. Puis dans un second temps, des acquisitions ont été réalisées sur proton, in vivo, en un temps d’acquisition compatible avec une utilisation en routine clinique à 7T. L’application d’une telle méthode d’IRM quantitative à UHF sur des populations permettra d’ouvrir de nouvelles voies d’études pour le futur. / Quantitative MRI refers to methods able to measure different physical parameters accessible in Nuclear Magnetic Resonance. It offers benefits compared to weighting imaging commonly used, for the detection, the pathophysiological characterization but also for the therapeutic follow-up of pathologies for example. Despite this long-established potential, these methods remain little used in clinical routine. The main reason is the long acquisition time compared to the classical approach. The physical parameters that we will study more particularly are the longitudinal (T₁), transverse (T₂) relaxation time, the apparent diffusion coefficient (ADC), and the proton density (DP). Despite the possibility to achieve a better image quality, these in vivo mappings are virtually non-existent in the literature beyond 3T because their implementation requires overcom-ing a number of specific ultra-high-field (UHF) MRI limits. Through this thesis project, a Quantitative Imaging method using Configuration States (QuICS) was implemented under strong UHF constraints, to determine these parameters simultaneously. The technique has been optimized to obtain fast and reliable maps. The potential of the method was first demon-strated in vitro on a nucleus such as sodium, exhibiting complex properties. As a second step, acquisitions were performed in proton, in vivo, in an clinically-relevant acquisition time, compatible with a routine use at 7T for population imaging. The application of such a method of quantitative MRI to UHF will open new research possibilities for the future.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLS429 |
Date | 23 November 2018 |
Creators | Leroi, Lisa |
Contributors | Université Paris-Saclay (ComUE), Vignaud, Alexandre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds