Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-10-03T18:43:06Z
No. of bitstreams: 1
2016 - Jorge Ant?nio Casagrande Bretas.pdf: 2891351 bytes, checksum: 638557595a03b65975bc6e16746991f8 (MD5) / Made available in DSpace on 2017-10-03T18:43:06Z (GMT). No. of bitstreams: 1
2016 - Jorge Ant?nio Casagrande Bretas.pdf: 2891351 bytes, checksum: 638557595a03b65975bc6e16746991f8 (MD5)
Previous issue date: 2016-08-29 / CAPES / The fat body of insects is involved in very important functions. Thus, the fat body, besides acting as a reserve site and synthesis of proteins, carbohydrates and lipids participates in the production of substances with action on the immune system, detoxification, production of eggs, sperm and pheromone. However, the main function of the fat body is the reserve of lipids. The fat body of insects is usually divided into two regions, the visceral fat body, located near the digestive tract, and the parietal fat body, located near the cuticle. The cell types found in the fat body of insects vary, being found only one type in some and more than ten kinds in others. The main cell types found in the fat body of insects are trophocytes, urocytes and oenocytes. The morphology and biochemistry of fat body Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas, was examined by light microscopy, electron microscopy and high-performance thin layer chromatography. Thus, cuts through the abdomen of adult males and females showed that the fatty body is divided into two main components, in accordance with the spatial distribution in the insect's body: one parietal part which is located just under the cuticle and other visceral which is distributed suspended lobes and often associated with tracheas in hemocele. The fat body of L. longipalpis contains only one cell type, trophocyte, which has a large amount of lipid droplets, protein and glycogen granules in their cytoplasm rosettes. The lipid composition varies according to the physiological and insect species. The neutral lipid stored in fat body found more insects is the triacylglycerol. In addition, small amounts of diacylglycerol, steroids, free fatty acids, carotenoids and monoglycerides are carried by lipoforina (major lipoprotein of the insects). The diacylglycerol is derived from triglycerides stored in fat body and is the main form of fatty acid which are recruited to sites of utilization such as flight muscles, for example. Biochemical analysis of the abdominal tergites L. longipalpis males, by high-performance thin layer chromatography, showed the presence of different classes of neutral lipid (mono-, di- and triacylglycerols, fatty acids, cholesterol and esterified cholesterol) and phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, lysophosphatidylcholine) in the fat body. Furthermore, the lipid composition of the abdominal tergites varied, with the highest amount of lipids extracted from the fourth tergite, which has pheromone producing gland. Finally, the main neutral lipid extracted from the fat body of L. longipalpis was the triacylglycerol and the main phospholipid was phosphatidylethanolamine. / O corpo gorduroso dos insetos est? envolvido em fun??es de grande import?ncia. Assim, o corpo gorduroso, al?m de atuar como s?tio de reserva e s?ntese de prote?nas, carboidratos e lip?dios participa da produ??o de subst?ncias com a??o no sistema imune, detoxifica??o, produ??o dos ?vulos, espermatozoides e de ferom?nios. Contudo, a principal fun??o do corpo gorduroso ? a reserva de lip?dios. O corpo gorduroso dos insetos normalmente ? dividido em duas regi?es, o corpo gorduroso visceral, localizado pr?ximo do tubo digestivo, e o corpo gorduroso parietal, localizado pr?ximo da cut?cula. Os tipos celulares encontrados no corpo gorduroso dos insetos variam, sendo encontrado apenas um tipo em alguns e mais de dez tipos em outros. Os principais tipos celulares encontrados no corpo gorduroso dos insetos s?o os trof?citos, ur?citos e os oen?citos. A morfologia e a bioqu?mica do corpo gorduroso de Lutzomyia longipalpis, o principal vetor da leishmaniose visceral nas Am?ricas, foi analisado por microscopia de luz, microscopia eletr?nica e cromatografia em camada fina de alta performance. Assim, cortes atrav?s do abd?men de machos e f?meas adultas mostraram que o corpo gorduroso ? dividido em dois componentes principais, de acordo com a distribui??o espacial no corpo do inseto: uma parte parietal que est? localizada logo abaixo da cut?cula, e outra visceral que est? distribu?da em l?bulos suspensos e frequentemente associado a traqueias na hemocele. O corpo gorduroso de L. longipalpis cont?m somente um tipo celular, o trof?cito, o qual possui grande quantidade de got?culas de lip?dios, gr?nulos de prote?na e rosetas de glicog?nio em seu citoplasma. A composi??o lip?dica varia de acordo com a condi??o fisiol?gica e esp?cie do inseto. O lip?dio neutro estocado mais encontrado no corpo gorduroso de insetos ? o triacilglicerol. Al?m disso, pequenas quantidades de diacilglicerol, esteroides, ?cidos graxos livres, carotenoides e monoacilglicerois s?o transportadas por lipoforina (maior lipoprote?na dos insetos). O diacilglicerol ? derivado de triacilglicerois estocados no corpo gorduroso e constitui a principal forma de acido graxo que s?o mobilizadas para os s?tios de utiliza??o tal como os m?sculos de voo, por exemplo. A an?lise bioqu?mica dos tergitos abdominais de machos de L. longipalpis, atrav?s de Cromatografia em camada fina de alta performance, mostrou a presen?a de diferentes classes de lip?dios neutros (mono-, di- e triacilglicerois, ?cidos graxos, colesterol e colesterol esterificado) e fosfolip?dios (fosfatidilcolina, fosfatidiletanolamina, fosfatidilinositol, lisofosfatidilcolina) no corpo gorduroso. Al?m disso, a composi??o lip?dica entre os tergitos abdominais variou, sendo a maior quantidade de lip?dios extra?dos do quarto tergito, o qual possui gl?ndulas produtoras de ferom?nio. Finalmente, o principal lip?dio neutro extra?do do corpo gorduroso de L. longipalpis foi o triacilglicerol e o principal fosfolip?dio foi a fosfatidiletanolamina.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:jspui/2069 |
Date | 29 August 2016 |
Creators | BRETAS, Jorge Ant?nio Casagrande |
Contributors | Mallet, Jacenir Reis dos Santos, Mallet, Jacenir Reis dos Santos, Feder, Maria Denise, Freitas, Simone Carneiro de, Gomes, Suzete Ara?jo Oliveira, Silva Junior, Renato da |
Publisher | Universidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Biologia Animal, UFRRJ, Brasil, Instituto de Ci?ncias Biol?gicas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ |
Rights | info:eu-repo/semantics/openAccess |
Relation | ALEXANDER, B., JARAMILLO, C., CADENA, H., USMA, M.C., ROA, W. E TRAVI, B.L. An attempt to control phlebotomine sand flies (Diptera: Psychodidae) by residual spraying with permethrin in a Colombian village. Memorias do Instituto Oswaldo Cruz, 90: 421-424, 1995. ALEXANDER, B. Sampling methods for phlebotomine sandflies. Medical and Veterinary Entomology, 14: 109-122, 2000. ARRESE, E. L. AND SOULAGES, J. L. Insect Fat Body: Energy, Metabolism, And Regulation. Annual Review of Entomology, 55: 207?225, 2010. ASSIS, W. A., MALTA, J., FILEMON, P., PIMENTA, P., RAMALHO-ORTIG?O, J. M., MARTINS, G. F. The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Arthropod Structure &Development, 1-9, 2014. ATELLA, G.C., MAJEROWICZ, D. AND E GONDIM, K.C. Metabolismo de Lip?deos. T?picos Avan?ados em Entomologia Molecular. Cap?tulo 6. 2012. AUERSWALD, L. AND GADE, G. Endocrine control of TAG lipase in the fat body of the migratory locust, Locusta migratoria. Insect Biochemical and Molecular Biology, 36: 759-768, 2006. BAO, Y., YAMANO, Y. AND MORISHIMA, I. Induction of hemolin gene expression by bacterial cell wall components in eri-silkworm, Samia Cynthia ricini. Comparative Biochemistry and Physiology, 146: 147-151, 2007. BLIGHT, E.G. AND DYER, W.J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37: 911-913, 1959. CHAPMAN, R. F. The Insects: structure and function. 4th edition. Cambrigde University Press, Cambrigde, 1998. CANAVOSO, L. E. AND WELLS, M. A. Metabolic pathways for diacylglycerol biosynthesis and release in the midgut of larval Manduca sexta. Insect Biochemistry and Molecular Biology, 30: 1173- 1180, 2000. CANAVOSO, L. E., JOUNI, Z. E., KARNAS, K. J., PENNINGTON, J. E., AND WELLS, M. A. Fat metabolism in insects. Annual Review of Nutrition, 21: 23- 46, 2001. CANAVOSO, L. E., FREDE, S., AND RUBIOLO, E. R. Metabolic pathways for dietary lipids in the midgut of hematophagous Panstrongylus megistus (Hemiptera :Reduviidae). Insect Biochemistry and Molecular Biology, 34: 845-854, 2004. COSTA-LEONARDO, A.M., LARANJO, L.T., JANEI, V., HAIFIG, I. The fat body of termites: functions and stored materials. Journal of Insect Physiology, 59(6): 577-87, 2013. DABORN, P. J., LUMB, C., BOEY, A., WONG, W., FFRENCH-CONSTANT, R. H., AND BATTERHAM, P. Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochemistry and Molecular Biology, 37: 512-519, 2007. DANTAS-TORRES, F., BRANDAO-FILHO, S. P. Visceral leishmaniasis in Brazil: revisiting paradigms of epidemiology and control. Revista do Instituto de Medicina Tropical de S?o Paulo, S?o Paulo, v. 48, n. 3, p. 151-156, 2006. DEANE, L.M. E DEANE, M.P. Visceral Leishmaniasis in Brazil: Geographical distribution and transmission. Revista do Instituto de Medicina Tropical de S?o Paulo, 4: 198-212, 1962. DEAN, R.L., LOCKE, M., COLLINS, J.V. Structure of fat body. In: Kerkut, G.A.,Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 3. Pergamon Press, Oxford, 155?210, 1985. DESJEUX, P. Public health aspects and control. Clinics in Dematology, 14: 417-423, 1996. DINIZ, L.M.O., DUANI, H., FREITAS, C.R., FIGUEIREDO, R.M., XAVIER, C.C. Neurological involvement in visceral leishmaniasis: case report. Revista da Sociedade Brasileira de Medicina Tropical, 43(6): 743-5, 2010. DOST?LOV?, A. AND VOLF, P. Leishmania development in sand flies: parasite-vector interactions overview. Parasites & Vectors, 5: 276, 2012. DUTKOWSKI, A.B. Fat body of Galleria mellonella during metamorphosis . Cytochemical and ultrastructural studies. Folia Histochem Cytochem (Krakow), 12: 269-279, 1974. ENG, M.W., VAN ZUYLEN M.N. AND SEVERSON D.W. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti. Insect Biochemistry and Molecular Biology, 76: 70?83, 2016. FAN, Y., ZUREK, L., DYKSTRA, M.J. AND SCHAL, C. Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German Cockroach, Blattella germanica. Naturwissenschaften, 90: 121-126, 2003. FAST, P.G. A comparative study of the phospholipids and fatty acids of some insects. Lipids. 209-215, 1966. FERRO, C.; CARDENAS, E.; CORREDOR, D.; MORALES, A.; MUNSTERMANN, L. E. Life cycle and fecundity analysis of Lutzomyia shannoni (Dyar) (Diptera: Psychodidae). Mem?rias do Instituto Oswaldo Cruz, Rio de Janeiro, v. 93, n. 2, p. 195-199, 1998. FONTANETTI, C.S., CAMARGO-MATHIAS, M.I. AND TIRITAN, B.M.S. The fat body in Rhinocricus padbergi (Diplopoda, Spirobolida). Iheringia, 94: 351-355, 2004. FORATTINI, O. Entomologia M?dica. Psychodidae. Phlebotominae. Leishmanioses. Bartonelose. S?o Paulo. Editora Edgar Blucher Ltda. E Editora da Universidade de S?o Paulo. p.658. 1973. FOSTER, S.P. Fatty acid and sex pheromone changes and the role of glandular lipids in the Z-strain of the European corn borer, Ostrinia nubilalis (Hubner). Archives of Insect Biochemistry and Physiology, 56: 73-83, 2004. FURTADO, W.C.A., AZEVEDO, D. O. , MARTINS, G. F. , ZANUNCIO, J. C. AND SERR?O, J. E. Histochemistry and Ultrastructure of Urocytes in the Pupae of the Stingless Bee Melipona quadrifasciata (Hymenoptera: Meliponini). Microscopy and Microanalysis, 19: 1502-1510, 2013. GILBERT, L.I. AND CHINO, H. Transport of lipids in insects. Journal of Lipid Research, 15: 439-456, 1974. GILLOTT, C., Entomology. Plenum Press, New York, 1995. GUDDERRA, N.P., SONENSHINE, D.E., APPERSON, C.S. AND ROE, R.M. Hemolymph proteins in ticks. Journal of Insect Physiology, 48: 269-278, 2002. HAUNERLAND, N.H. AND SHIRK, P.D. Regional and functional-differentiation in the insect fat-body. Annual Review of Entomology, 40: 121-145, 1995. HOFFMANN, J.A. The immune response of Drosophila. Nature, 426: 33-38, 2003. HORIE, S. AND SUGA, T. Participation of peroxisomes in lipid biosynthesis in the harderian gland of guinea pig. The Biochemical Journal, 262: 677-680, 1989. HORWITZ, J. AND PERLMAN, R.L. Measurement of inositol phospholipid metabolism in PC12 pheochromocytoma cells. Methods in Enzymology, 141: 169-175, 1987. HOSKOVEC, M., LUXOVA, A., SVATOS, A. and Boland, W. Biosynthesis of sex pheromones in moths: stereochemistry of fatty alcohol oxidation in Manduca sexta. Tetrahedron, 58: 9193-9201, 2002. HU, J.S., LI, F.C., XU, K.Z., NI, M., WANG, B.B., TIAN, J.H., LI, Y.Y., SHEN, W.D., LI, B. Mechanisms of TiO2 NPs-induced phoxim metabolism in silkworm (Bombyx mori) fat body. Pesticide Biochemistry and Physiology, 129: 89-94, 2016. JENSEN, P.V. AND BORGESEN, L.W. Regional and functional differentiation in the fat body of pharaoh's ant queens, Monomorium pharaonis (L.). Arthropod Structure and Development, 29: 171-184, 2000. JURENKA, R.A., SUBCHEV, M., ABAD, J.L., CHOI, M.Y. AND FABRIAS, G. Sex pheromone biosynthetic pathway for disparlure in the gypsy moth, Lymantria dispar. Proceeding of the National Academy of Sciences of the United States of America, 100: 809-814, 2003. KASINATHAN, S., BALASUBRAMANIAN, A., RAMAKRISHNAN, S. and BASU, S. L. The role of fat body in testicular spermatogenesis and steroidogenesis in Rana hexadactyla Lesson. Journal of Biosciences. June, 207?213, 1979. KAWOOYA, J.K. AND LAW, J.H. Role of lipophorin in lipid transport to the insect egg. The Journal of Biological Chemistry, 263: 8748-8753, 1988. KILLICK-KENDRICK R. Phlebotomine vectors of the leishmaniases: a review. Medical and Veterinary Entomology, 4: l-24, 1990. KUNKEL, J. G. and NORDIN, J. H. Yolk Proteins. In comprehensive insect physiology, biochemistry and pharmacology. Chapter 4, Vol.I, eds. GA Kerkut and LI Gilbert, Pergamon Press, 83-111, 1985. LAINSON, R., DYE, C., SHAW, J.J., MACDONALD, D.W., COURTENAY, O., SOUZA, A.A., et al. Amazonian visceral leishmaniasis-distribution of the vector Lutzomyia longipalpis (Lutz & Neiva) in relation to the fox Cerdocyon thous (linn.) and the efficiency of this reservoir host as a source of infection. Mem Inst Oswaldo Cruz; 85(1):135-7, 1990. LOCKE, M. Surface membranes, Golgi complexes, and vacuolar systems. Annual Review of Entomology, 48: 1-27, 2003. LUTZ, A. AND NEIVA, A. Contribui??o para o conhecimento das esp?cies do g?nero Phlebotomus existentes no Brasil. Mem?rias do Instituto Oswaldo Cruz 4, 84-95, 1912. MARTINS, G.F. AND RAMALHO-ORTIG?O, J.M. Oenocytes in insects. Invertebrate Survival Journal, 139-152, 2012. MAJEROWICZ D, CEZIMBRA MP, ALVES-BEZERRA M, ENTRINGER PF, ATELLA GC, SOLA-PENNA M, MEYER-FERNANDES JR, GONDIM KC. Rhodnius prolixus lipophorin: lipid composition and effect of high temperature on physiological role. Archives of Insect Biochemistry and Physiology, 82 (3): 129-40, 2013. MCGETTIGAN, J., MCLENNAN, R.K., BRODERICK, K.E., KEAN, L., ALLAN, A.K., CABRERO, P., REGULSKI, M.R., POLLOCK, V.P., GOULD, G.W., DAVIES, S.A. AND DOW, J.A. Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection. Insect Biochemistry and Molecular Biology, 35: 741-754, 2005. MINTZAS, A.C., CHRYSANTHIS, G., CHRISTODOULOU, C. AND MARMARAS, V.J. Translation of the mRNAs coding for the major hemolymph proteins of Ceratitis capitata in cell-free system: comparison of the translatable mRNA levels to the respective biosynthetic levels of the proteins in the fat body during development. Developmental Biology, 95: 492-496, 1983. MODI, G.B. AND TESH, R.B.A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. Journal of Medical Entomology, 20: 568-569, 1983. MONTEIRO, C. C. O papel da microbiota intestinal na compet?ncia vetorial do Lutzomyia longipalpis para a Leishmania (Leishmania) infantum chagasi e a transmiss?o do parasito ao vertebrado pela da picada. Disserta??o (Mestrado em Ci?ncias da Sa?de) ? Programa de P?s-Gradua??o em Ci?ncias da Sa?de, Centro de Pesquisa Ren? Rachou, Belo Horizonte. 71f. 2012. MORALES, A.; BELLO, F., CARDENAS, E. Establecimiento, mantenimiento y productividad de una colonia de laboratorio de Lutzomyia spinicrassa Morales, Osorno-Mesa, Osorno y Hoyos, 1969 (Diptera: Psychodidae) en Colombia. Revista Ciencias de La Salud, Bogot?, v. 3, n. 2, p. 129-135, 2005. PAYRASTRE, B., MISSY, K., GIURIATO, S., BODIN, S., PLANTAVID, M. AND GRATACAP, M. Phosphoinositides: key players in cell signalling, in time and space. Cellular Signalling, 13: 377-387, 2001. PERCY, J. AND MACDONALD, J. A. Biology and utrastructure of sex pheromone producing glands. Academic Press, Florida, 1987. RAIKHEL, A.S. AND LEA, A.O. Previtellogenic development and vitellogenin synthesis in the fat body of a mosquito: an ultrastructural and immunocytochemical study. Tissue and Cell 15, 281-299, 1983. RICHARDI, V. S., VICENTINI, M., REBECHI, D., F?VARO, L. F., NAVARRO-SILVA, M. A. Morpho-histological characterization of immature of the bioindicator midge Chironomus sancticaroli Strixino and Strixino (Diptera, Chironomidae). Revista Brasileira de Entomologia. 59: 240?250, 2015. ROMA, G.C., MATHIAS, M.I. AND BUENO, O.C. Fat body in some genera of leaf-cutting ants (Hymenoptera: Formicidae). Proteins, lipids and polysaccharides detection. Micron, 37: 234-242, 2006. ROMA, G. C., MATHIAS, M.I. AND BUENO, O.C. Morpho-physiological analysis of the insect fat body: A review. Micron, 41: 395?401, 2010 RUIZ, J.I. AND OCHOA, B. Quantification in the subnanomolar range of phospholipids and neutral lipids by monodimensional thin-layer chromatography and image analysis. Journal of Lipid Research, 38: 1482-1489, 1997. SHIMABUKURO, P. H. F. AND GALATI, E. A. B. Checklist dos Phlebotominae (Diptera, Psychodidae) do estado de S?o Paulo, Brasil, com coment?rios sobre sua distribui??o geogr?fica. Biota Neotroprica, S?o Paulo, v. 11, n. 1, 2011. SHIMABUKURO, P. H. F., TOLEZANO, J. E., GALATI, E. A. B. Chave de identifica??o ilustrada dos Phlebotominae (Diptera, Psychodidae) do estado de S?o Paulo. Pap?is Avulsos do Departamento de Zoologia, S?o Paulo, v. 51, n. 27, p. 399-441, 2011. SNODGRASS, R. E. Principles of insect morphology. New York (McGraw-Hill). 'A revised interpretation of the external reproductive organs of male insects.' Smithsonian misc. 1935. SPIEGEL, C.N., BRAZIL, R.P. AND SOARES, M.J. Ultrastructural cytochemistry of the sex pheromone glands of Lutzomyia cruzi male sand flies (Diptera : Psychodidae : Phlebotominae). Arthropod Structure and Development, 33: 399-404, 2004. SPIEGEL, C.N., BATISTA-PEREIRA, L.G., BRETAS, J.A., EIRAS, A.E., HOOPER, A.M., PEIXOTO, A.A., SOARES, M.J. Pheromone Gland Development and Pheromone Production in Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae). Journal of Medical Entomology. 489-495, 2011. SPIEGEL, C. N., BRETAS J. A. C., PEIXOTO, A. A., VIGODER, F. M., BRUNO, R.V., SOARES, M. J. Fine Structure of the Male Reproductive System and Reproductive Behavior of Lutzomyia longipalpis Sandflies (Diptera: Psychodidae: Phlebotominae). Plos One. September 13, 2013. SLOCINSKA M, CZUBAK T, MARCINIAK P, JARMUSZKIEWICZ W, ROSINSKI G. The activity of the monsulfated sulfakinin Zopat-sk-1 ligated larvae of the beetle Zophobas atratus. Peptides, 69: 127-32, 2015. TESH, R. B. The genus Phlebovirus and its vectors. Annual Review of Entomology, Palo Alto, 33: 169?181, 1988. TOJO, S., BETCHAKU, T., ZICCARDI, V.J. AND WYATT, G.R. Fat body protein granules and storage proteins in the silkmoth, Hyalophora cecropia. The Journal of Cell Biology, 78: 823-838, 1978. TSUCHIDA, K. AND WELLS, M. A. Digestion, absorption, transport and storage of fat during the last larval stadium of Manduca Sexta - changes in the role of lipophorin in the delivery of dietary-lipid to the fat-body. Insect Biochemistry, 18: 263-268, 1988. TURUNEN, S. Metabolic pathways in the midgut epithelium of Pieris-Brassicae during carbohydrate and lipid assimilation. Insect Biochemistry and Molecular Biology, 23: 681-689, 1993. VAN HEUSDEN, M.C. AND LAW, J.H. An insect lipid transfer particle promotes lipid loading from fat body to lipoprotein. The Journal of Biological Chemistry, 264: 17287-17292, 1989. VAN HOOF, D., RODENBURG, K.W. AND VAN DER HORST, D.J. Lipophorin receptor-mediated lipoprotein endocytosis in insect fat body cells. Journal of Lipid Research, 44: 1431-1440, 2003. XIMENES, A. A., SILVA-CARDOSO, L., DE CICCO, N.N., PEREIRA, M.G., LOUREN?O, D.C., FAMPA, P., FOLLY, E., CUNHA-E-SILVA, N.L., SILVA-NETO, M.A., ATELLA, G.C. Lipophorin Drives Lipid Incorporation and Metabolism in Insect Trypanosomatids. Protist, 166: 297?309, 2015. WEERS, P.M., VAN DER HORST, D.J., VAN MARREWIJK, W.J., VAN DEN EIJNDEN, M., VAN DOORN, J.M. AND BEENAKKERS, A.M. Biosynthesis and secretion of insect lipoprotein. Journal of Lipid Research, 33: 485-491, 1992. WHO - World Health Organization. Neglected tropical diseases. Dispon?vel em: http://www.who.int/neglected_diseases/news/WHO_implement_epidemiological_surveillance_leishmaniasis/en/.Acesso em: 05/08/2016. WINSTON, A.A. AND PERSONNE, P. The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species. The Journal of Cell Biology, 44: 29-51, 1970. YIN, L., NORDIN, J.H., LUCCHES, P. AND GIORGI, F. Cysteine proprotease colocalizes with vitellogenin in compound granules of the cockroach fat body. Cell and Tissue Research, 304: 391-399, 2001. ZHANG, G., HAO, Y., JIN, L. H. Overexpression of jumu induces melanotic nodules by activating Toll signaling in Drosophila. Insect Biochemistry and Molecular Biology, 77: 31-38, 2016. ZARA, F.J. AND CAETANO, F.H. Ultramorphology and histochemistry of fat body cells from last instar larval of the Pachycondyla (=Neoponera) villosa (Fabricius) (Formicidae: Ponerinae). Brazilian Journal of Biology, 64: 725-735, 2004. ZIEGLER, R. AND VAN ANTWERPEN, R. Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, 36: 264-272, 2006. YAKOVLEV, A.Y., NESIN, A.P., SIMONENKO, N.P., GORDYA, N.A., TULIN, D.V., KRUGLIKOVA, A.A., CHERNYSH, S.I. Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae. In Vitro Cellular & Developmental Biology?Animal, September. 2016. YOUNG GD, DUNCAN MA. Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, The West Indies, Central and South America (Diptera: Psichodidae). Mem Am Entomol Inst., 54: 1-881, 1994. |
Page generated in 0.0054 seconds