The dynamics of ultrashort pulse generation and amplification in dye lasers is studied in this dissertation. In particular, we have developed general semiclassical models for ultrashort pulse dye laser amplifiers and oscillators. These models start from Maxwell’s equation for the electric field and density matrix equations for the active laser medium. A finite coherence time or phase memory time of the molecular wave functions, a finite vibrational relaxation time for the lower electronic state of the dye laser transition, an isotropic molecular orientational distribution, and an arbitrary pump polarization are all taken into account. Based on these models, specific topics that are discussed herein include pump polarization effects, timing and detuning studies in synchronously pumped mode-locked dye lasers, and amplification of ultrashort pulses in dye laser amplifiers. Properties such as pulse width, pulse shape, pulse intensity, pulse stability, pulse amplification efficiency, etc., are studied in detail.
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-2309 |
Date | 01 January 1993 |
Creators | Jiang, Shuanghua |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0023 seconds