Return to search

Assessment of Reliablity Against Corrision Fatigue Failure for Low Pressure Turbine Blades under Unbanlanced Power System Operation

Usually, a large steam turbine-generator unit has itself a blade vibration mode that is close to its double electrical frequency. This mode of vibration will easily be excited by electrical load unbalance, thereby the turbine blades will be affected by this kind of vibrations, especially for the last three rows of blades. In fact, turbine generators operate in corrosive environment and undergo the statistical stress impact due to the randomly unbalanced currents. In this paper, the blades are subjected to corrosion fatigue, thereby small stress still may cause damage significantly. On the other hand, the damage caused by system unbalance is so small that people could neglect it usually. Nevertheless, for the long-term operation with lasting system unbalance, its influence on reliability may no longer be omitted.
According to the gamma distribution in unbalanced negative phase current (I2), the probability level of fatigue life, the reliability against fatigue failure and crack growth of turbine blades are evaluated for three turbine-generator system in the paper. The blades with various materials, safety factors and stress concentration factors are considered in the simulations. The influence of extreme value distribution of I2 to the reliability is also investigated. According to the results, we have reason to believe that corrosion fatigue is one of causes that led to crack initiation or damage of blades under normal operation.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0627100-133528
Date27 June 2000
CreatorsChen, Wen-Chih
ContributorsT.P Tsao, Ming-Yuan Cho, Shih Chao, W.C Chu, W.M Lin
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0627100-133528
Rightsrestricted, Copyright information available at source archive

Page generated in 0.0018 seconds