La compréhension des pathologies humaines et du mode d'action des médicaments passe par la prise en compte des réseaux d'interactions entre biomolécules. Les recherches récentes sur les systèmes biologiques produisent de plus en plus de données sur ces réseaux qui gouvernent les processus cellulaires. L'hétérogénéité et la multiplicité de ces données rendent difficile leur intégration dans les raisonnements des utilisateurs. Je propose ici des approches intégratives mettant en oeuvre des techniques de gestion de données, de visualisation de graphes et de fouille de données, pour tenter de répondre au problème de l'exploitation insuffisante des données sur les réseaux dans la compréhension des phénotypes associés aux maladies génétiques ou des effets secondaires des médicaments. La gestion des données sur les protéines et leurs propriétés est assurée par un système d'entrepôt de données générique, NetworkDB, personnalisable et actualisable de façon semi-automatique. Des techniques de visualisation de graphes ont été couplées à NetworkDB pour utiliser les données sur les réseaux biologiques dans l'étude de l'étiologie des maladies génétiques entrainant une déficience intellectuelle. Des sous-réseaux de gènes impliqués ont ainsi pu être identifiés et caractérisés. Des profils combinant des effets secondaires partagés par les mêmes médicaments ont été extraits de NetworkDB puis caractérisés en appliquant une méthode de fouille de données relationnelles couplée à Network DB. Les résultats permettent de décrire quelles propriétés des médicaments et de leurs cibles (incluant l'appartenance à des réseaux biologiques) sont associées à tel ou tel profil d'effets secondaires / The understanding of human diseases and drug mechanisms requires today to take into account molecular interaction networks. Recent studies on biological systems are producing increasing amounts of data. However, complexity and heterogeneity of these datasets make it difficult to exploit them for understanding atypical phenotypes or drug side-effects. This thesis presents two knowledge-based integrative approaches that combine data management, graph visualization and data mining techniques in order to improve our understanding of phenotypes associated with genetic diseases or drug side-effects. Data management relies on a generic data warehouse, NetworkDB, that integrates data on proteins and their properties. Customization of the NetworkDB model and regular updates are semi-automatic. Graph visualization techniques have been coupled with NetworkDB. This approach has facilitated access to biological network data in order to study genetic disease etiology, including X-linked intellectual disability (XLID). Meaningful sub-networks of genes have thus been identified and characterized. Drug side-effect profiles have been extracted from NetworkDB and subsequently characterized by a relational learning procedure coupled with NetworkDB. The resulting rules indicate which properties of drugs and their targets (including networks) preferentially associate with a particular side-effect profile
Identifer | oai:union.ndltd.org:theses.fr/2013LORR0122 |
Date | 25 September 2013 |
Creators | Bresso, Emmanuel |
Contributors | Université de Lorraine, Jonveaux, Philippe, Devignes, Marie-Dominique |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds