Return to search

Numerical models to simulate underwater turbine noise levels

This work incorporates previous work done by Guerra and the application of fluid dynamics. The structure attached to the turbine will cause unsteady fluctuations in the flow, and ultimately affect the acoustic pressure. The work of Guerra is based on a lot of assumptions and simplifications to the geometry of the turbine and structure. This work takes the geometry of the actual turbine, and uses computational fluid dynamic software to numerically model the flow around the turbine structure. Varying the angle of the attack altered the results, and as the angle increased the noise levels along with the sound pulse, and unsteady loading increased. Increasing the number of blades and reducing the chord length both reduced the unsteady loading. / by Renee' Lippert. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_3948
ContributorsLippert, Renee'., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeText, Electronic Thesis or Dissertation
Formatxi, 110 p. : ill. (some col.), electronic
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0017 seconds