Return to search

Modeling And Control Of Autonomous Underwater Vehicle Manipulator Systems

In this thesis, dynamic modeling and nonlinear control of autonomous underwater vehicle manipulator systems are presented. Mainly, two types of systems consisting of a 6-DOF AUV equipped with a 6-DOF manipulator subsystem (UVMS) and with an 8-DOF redundant manipulator subsystem (UVRMS) are modeled considering hydrostatic forces and hydrodynamic effects such as added mass, lift, drag and side forces. The shadowing effects of the bodies on each other are introduced when computing the hydrodynamic forces. The system equations of motion are derived recursively using Newton&ndash / Euler formulation. The inverse dynamics control algorithms are formulated and trajectory tracking control of the systems is achieved by assigning separate tasks for the end effector of the manipulator and for the underwater vehicle. The proposed inverse dynamics controller utilizes the full nonlinear model of the system and consists of a linearizing control law that uses the feedback of positions and velocities of the joints and the underwater vehicle in order to cancel off the nonlinearities of the system. The PD control is applied after this complicated feedback linearization process yielding second order error dynamics. The thruster dynamics is also incorporated into the control system design. The stability analysis is performed in the presence of parametric uncertainty and disturbing ocean current. The effectiveness of the control methods are demonstrated by simulations for typical underwater missions.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12615051/index.pdf
Date01 September 2012
CreatorsKorkmaz, Ozan
ContributorsIder, S. Kemal
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsAccess forbidden for 1 year

Page generated in 0.0016 seconds