A "Geometrodynamical Analog to Electric Charge" (or "p-charge") is defined (as in the earlier paper by Unruh, [Gen. Rel. and Grav., 2, (1971), pp 27-33 ] to be the period on a p-cycle (p = 1, 2, or 3) of a p-form which is constructed out of only the Riemann tensor or its derivatives.
A previously-unpublished proof by Unruh is briefly summarized which proves that no non-zero p-charges can exist on a completely unrestricted metric field.
The metric field is then constrained to obey Einstein's equations for empty space, and sets of linearly-independent, purely-gravitational p-forms are analyzed to determine if p-charges can be defined under these conditions. A scheme is developed, based on the spin-tensor representation of the gravitational field, to generate complete sets of such p-forms, arid calculate their derivatives, with a symbolic-manipulation computer program. It is shown that no gravitational p-forms that are linear combinations of less than five Riemann tensors and less than nine derivatives will result in p-charges. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/23121 |
Date | January 1982 |
Creators | Davenport, Michael Richard |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.002 seconds