Neste trabalho estudamos medidas invariantes para aplicações unimodais. Estamos especialmente interessados em detectar as situações que levam uma aplicação unimodal a não possuir uma medida piac, ou seja, uma medida de probabilidade invariante e absolutamente contínua em relação à medida de Lebesgue. Mostramos que a ordem do ponto crítico e a sua capacidade de recorrência são os fatores mais relevantes nesta questão. Os valores das derivadas da aplicação nos pontos periódicos tem uma infuência menor, mas suficiente para garantir que numa mesma classe de conjuga ção topológica podem existir duas aplicações unimodais com ponto crítico de mesma ordem, sendo que uma delas possui medida piac e a outra não possui. A capacidade de recorrência do ponto crítico, talvez o principal fator nesta questão, depende de aspectos combinatórios bem sofisticados. As ferramentas principais para analisar estes aspectos envolvem os conceitos de tempos de corte e de aplicações kneading. A existência ou não de medidas piac é uma propriedade de natureza métrica, e por isto, é necessário que tenhamos controle de como os iterados da aplicação unimodal distorcem a medida de Lebesgue. Então precisamos usar ferramentas de controle de distorção que incluem principalmente os Princípios de Koebe. Um ponto culminante deste trabalho diz respeito a relação entre existência de mediada piac e existência de atratores selvagens, isto é: atratores métricos que não são atratores topológicos e vice versa. Usamos aqui um argumento probabilístico de rara beleza. / In this work we study invariant measures for unimodal maps. We are especially interested in detecting situations that cause a unimodal map not to have a piac measure, i.e., a measure that is Probability Invariant and Absolutely Continuous with respect to Lebesgue measure. We show that the order of the critical point and its capacity for recurrence are the most relevant factors in this matter. The values of the derivatives of the map at periodic points have a small inuence, but enough to ensure that within a single class of topological conjugacy, there can be two unimodal maps with critical points of the same order, one of which has a piac measure and the other does not. The recurrence capacity of the critical point depends on very sophisticated combinatorial aspects and is probably the main factor in this issue. The main tools to analyze these aspects involve the concepts of cutting times and kneading maps. The existence of piac measures is a property of metric nature, and for this reason we need to have control of how iterations of the unimodal map distort the Lebesgue measure. We therefore need to use distortion control tools, including especially the Principles of Koebe. A culmination of this work concerns the relationship between existence of piac measures and the existence of wild attractors, i.e., metric attractors that not are topological attractors. Here we use a probabilistic argument of rare beauty.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-01092014-161052 |
Date | 21 February 2014 |
Creators | Silva, Belmiro Galo da |
Contributors | Vargas, Edson |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds