Nessa dissertação estudamos Sistemas Dinâmicos do ponto de vista da Otimização Ergódica. Analizamos o problema da maximização da integral de potenciais com respeito a probabilidades invariantes pela dinâmica. Mostramos que toda medida ergódica e unicamente maximizante para algum potencial. Verificamos que o conjunto de potenciais com exatamente uma medida maximizadora e residual. Esses resultados são obtidos atrav es de técnicas da Teoria Ergódica e Análise Convexa. / In this thesis we study dynamical systems trough the viewpoint of ergodic optimization. We analyze the problem of maximizing integrals of potentials with respect to invariant probabilities. We show that every ergodic measure is uniquely maximizing for some potential. We also verify that the set of potentials with exactly one maximizing measure is residual. This results are obtained through techniques of ergodic theory and convex analysis.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/143938 |
Date | January 2016 |
Creators | Spier, Thomás Jung |
Contributors | Souza, Rafael Rigão |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds