Opinion Target Extraction (OTE) is a well-established subtask of sentiment analysis. While detecting sentiment polarity is useful in itself, the ability to extract the targets of the opinions allows for more thorough decision making. For example, an owner of a restaurant needs to know whether the guests are complaining about the food, or the ambience, or any other aspect of their establishment, etc. Despite the lexical information being crucial for the task, syntactic structures have potential in being used to correctly decide among multiple candidate entities. Rules based on such structures have been used previously for the task. The objective of this thesis is to investigate, whether syntactic information influences the behavior of the state-of-the-art models such as recurrent neural networks for the OTE task. We did not find any substantial evidence to suggest that adding the syntactic information influences the behavior of the models.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:405025 |
Date | January 2019 |
Creators | Glončák, Vladan |
Contributors | Hajič, Jan, Helcl, Jindřich |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds