The creation of a high-quality optical character recognition system (OCR) requires a large amount of labeled data. Obtaining, or in other words creating, such a quantity of labeled data is a costly process. This thesis focuses on several methods which efficiently use unlabeled data for the training of an OCR neural network. The proposed methods fall into the category of self-training algorithms. The general approach of all proposed methods can be summarized as follows. Firstly, the seed model is trained on a limited amount of labeled data. Then, the seed model in combination with the language model is used for producing pseudo-labels for unlabeled data. Machine-labeled data are then combined with the training data used for the creation of the seed model and they are used again for the creation of the target model. The successfulness of individual methods is measured on the handwritten ICFHR 2014 Bentham dataset. Experiments were conducted on two datasets which represented different degrees of labeled data availability. The best model trained on the smaller dataset achieved 3.70 CER [%], which is a relative improvement of 42 % in comparison with the seed model, and the best model trained on the bigger dataset achieved 1.90 CER [%], which is a relative improvement of 26 % in comparison with the seed model. This thesis shows that the proposed methods can be efficiently used to improve the OCR error rate by means of unlabeled data.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:445580 |
Date | January 2021 |
Creators | Buchal, Petr |
Contributors | Dobeš, Petr, Hradiš, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds