The aim of this thesis is to explore clustering algorithms of machine unsupervised learning, which can be used for image database classification by similarity. For chosen clustering algorithms is written up a theoretical basis. For better classification of used database this thesis deals with different methods of image preprocessing. With these methods the features from image are extracted. Next the thesis solves of implementation of preprocessing methods and practical application of clustering algorithms. In practical part is programmed aplication in Python programming language, which classifies the database of images into classes by similarity. The thesis tests all of used methods and at the end of the thesis is processed searches of results.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413248 |
Date | January 2020 |
Creators | Ševčík, Zdeněk |
Contributors | Miklánek, Štěpán, Sikora, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds