Return to search

The Impact of Salt Marsh Hydrogeology on Dissolved Uranium

We quantified U removal and investigated the efficacy of uranium as a quantitative tracer of groundwater discharge in a headwater salt marsh of the Okatee River, Bluffton, SC. Determining the magnitude of U removal is important for advancing U as a tracer of paleo-oceanic conditions. Since salt marsh groundwater is typically enriched in nutrients and other biologically and chemically reactive species, quantifying groundwater discharge from marshes is critical for understanding the ability of salt marshes to modify the chemistry of important species in surface waters.
We hypothesized that water-column U(VI) was removed by tidally-induced advection of surface water into permeable, anoxic salt marsh sediments, a process resulting in bacterially-mediated precipitation of insoluble U(IV)O2 and/or sorption of uranium to iron-oxides at the oxic/anoxic sediment interface. Furthermore, we suggested that hydraulic pressure gradients established by marsh-surface tidal inundation and seasonally-variable rainfall promote the discharge of salt-marsh-processed, uranium-depleted groundwater to tidal creeks, producing the surface-water U-removal signal.
Groundwater and surface water data revealed non-conservative uranium behavior. We documented extensive uranium removal from shallow marsh groundwater and seasonally variable uranium removal from surface waters. These observations allowed for the calculation of seasonally-dependent salt marsh uranium removal rates. On a yearly basis, our removal rate (58 to 104 mol m-2 year-1) reemphasized the importance of anoxic coastal environments for U removal.
High uranium removal, high barium concentration water observed seeping from creek banks at low tide supported our hypothesis that groundwater discharge must contribute to uranium removal documented in tidal surface waters. Average site groundwater provided an analytically reasonable endmember for explaining uranium depletion in surface water. Therefore, we used three endmember mixing models for estimating the fraction of surface water with presumed a groundwater signature. Our discharge estimates of 8 to 37 L m-2 day-1 agreed closely with previously published salt marsh values. Seasonality in discharge rates can be rationalized with appeal to seasonal patterns in observed rainfall, tidal forcing, and marsh surface bioturbation. Although more work is needed, the results of this portion of the study suggest that U may be an effective quantitative tracer of groundwater discharge from salt marshes.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7262
Date12 May 2004
CreatorsSibley, Samuel D., Jr.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Format2025858 bytes, application/pdf

Page generated in 0.0019 seconds