Return to search

Impact des multitrajets sur les performances des systèmes de navigation par satellite : contribution à l'amélioration de la précision de localisation par modélisation bayésienne / Multipath impact on the performances of satellite navigation systems : contribution to the enhancement of location accuracy towards bayesian modeling

De nombreuses solutions sont développées pour diminuer l'influence des multitrajets sur la précision et la disponibilité des systèmes GNSS. L'intégration de capteurs supplémentaires dans le système de localisation est l'une des solutions permettant de compenser notamment l'absence de données satellitaires. Un tel système est certes d'une bonne précision mais sa complexité et son coût limitent un usage très répandu.Cette thèse propose une approche algorithmique destinée à améliorer la précision des systèmes GNSS en milieu urbain. L'étude se base sur l'utilisation des signaux GNSS uniquement et une connaissance de l'environnement proche du récepteur à partir d'un modèle 3D du lieu de navigation.La méthode présentée intervient à l'étape de filtrage du signal reçu par le récepteur GNSS. Elle exploite les techniques de filtrage statistique de type Monte Carlo Séquentiels appelées filtre particulaire. L'erreur de position en milieu urbain est liée à l'état de réception des signaux satellitaires (bloqué, direct ou réfléchi). C'est pourquoi une information sur l'environnement du récepteur doit être prise en compte. La thèse propose également un nouveau modèle d'erreurs de pseudodistance qui permet de considérer les conditions de réception du signal dans le calcul de la position.Dans un premier temps, l'état de réception de chaque satellite reçu est supposé connu dans le filtre particulaire. Une chaîne de Markov, valable pour une trajectoire connue du mobile, est préalablement définie pour déduire les états successifs de réception des satellites. Par la suite, on utilise une distribution de Dirichlet pour estimer les états de réception des satellites / Most of the GNSS-based transport applications are employed in dense urban areas. One of the reasons of bad position accuracy in urban area is the obstacle's presence (building and trees). Many solutions are developed to decrease the multipath impact on accuracy and availability of GNSS systems. Integration of supplementary sensors into the localisation system is one of the solutions used to supply a lack of GNSS data. Such systems offer good accuracy but increase complexity and cost, which becomes inappropriate to equip a large fleet of vehicles.This thesis proposes an algorithmic approach to enhance the position accuracy in urban environment. The study is based on GNSS signals only and knowledge of the close reception environment with a 3D model of the navigation area.The method impacts the signal filtering step of the process. The filtering process is based on Sequential Monte Carlo methods called particle filter. As the position error in urban area is related to the satellite reception state (blocked, direct or reflected), information of the receiver environment is taken into account. A pseudorange error model is also proposed to fit satellite reception conditions. In a first work, the reception state of each satellite is assumed to be known. A Markov chain is defined for a known trajectory of the vehicle and is used to determine the successive reception states of each signal. Then, the states are estimated using a Dirichlet distribution

Identiferoai:union.ndltd.org:theses.fr/2009ECLI0001
Date19 February 2009
CreatorsNahimana, Donnay Fleury
ContributorsEcole centrale de Lille, Duflos, Emmanuel, Marais, Juliette
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds