Depuis l'explosion du Web, la Recherche d'Information (RI) s'est vue étendue et les moteurs de recherche sur le Web ont vu le jour. Les méthodes classiques de la RI, surtout destinées à des recherches textuelles simples, se sont retrouvées face à des documents de différents formats et des contenus riches. L'utilisateur, en réponse à cette avancée, est devenu plus exigeant quant aux résultats retournés par les systèmes de RI. La personnalisation tente de répondre à ces exigences en ayant pour objectif principal l'amélioration des résultats retournés à l'utilisateur en fonction de sa perception et de ses intérêts ainsi que de ses préférences. Le présent travail de thèse se situe à la croisée des différents aspects présentés et couvre cette problématique. Elle a pour objectif principal de proposer des solutions nouvelles et efficaces à cette problématique. Pour atteindre cet objectif, un système de personnalisation de la recherche spatiale et sémantique sur le Web et intégrant la modélisation de l'utilisateur, a été proposé. Ce système comprend deux volets : 1/ la modélisation de l'utilisateur ; 2/ la collaboration implicite des utilisateurs à travers la construction d'un réseau de modèles utilisateurs, construit itérativement lors des différentes recherches effectuées en ligne. Un prototype supportant le système proposé a été développé afin d'expérimenter et d'évaluer l'ensemble de la proposition. Ainsi, nous avons effectué un ensemble d'évaluation, dont les principales sont : a) l'évaluation de la qualité du modèle de l'utilisateur ; b) l'évaluation de l'efficacité de la recherche d'information ; c) l’évaluation de l'efficacité de la recherche d'information intégrant les informations spatiales ; d) l'évaluation de la recherche exploitant le réseau d'utilisateurs. Les expérimentations menées montrent une amélioration de la personnalisation des résultats présentés par rapport à ceux obtenus par d'autres moteurs de recherche. / The web explosion has led Information Retrieval (IR) to be extended and web search engines emergence. The conventional IR methods, usually intended for simple textual searches, faced new documents types and rich and scalable contents. The users, facing these evolutions, ask more for IR systems search results quality. In this context, the personalization main objective is improving results returned to the end user based sing on its perception and its interests and preferences. This thesis context is concerned with these different aspects. Its main objective is to propose new and effective solutions to the personalization problem. To achieve this goal, a spatial and semantic web personalization system integrating implicit user modeling is proposed. This system has two components: 1/ user modeling; /2 implicit users' collaboration through the construction of a users' models network. A system prototype was developed for the evaluation purpose that contains: a) user model quality evaluation; b) information retrieval quality evaluation; c) information retrieval quality evaluation with the spatial user model data; d) information retrieval quality evaluation with the whole user model data and the users' models network. Experiments showed amelioration in the personalized search results compared to a baseline web search.
Identifer | oai:union.ndltd.org:theses.fr/2012PA112164 |
Date | 21 September 2012 |
Creators | Hadjouni Krir, Myriam |
Contributors | Paris 11, École Nationale des Sciences de l'Informatique (La Manouba, Tunisie), Hadjami Ben Ghezala, Henda, Aufaure, Marie-Aude |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0022 seconds