Return to search

Study on multidrug resistance associated genes, ninjurin1 and thrombospondin1, in human uterine sarcoma cells.

Leung, Winnie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 155-164). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.v / Table of Contents --- p.vi / List of Figures --- p.x / Abbreviations --- p.xii / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Clinical management of Cancer --- p.2 / Chapter 1.2 --- Multidrug resistance --- p.8 / Chapter 1.3 --- Aim of study --- p.14 / Chapter Chapter 2 --- Identification of gene contributing to multidrug resistance in human uterine sarcoma cells --- p.16 / Chapter 2.1 --- Introduction --- p.17 / Chapter 2.2 --- Material and Methods / Chapter 2.2.1 --- Materials / Chapter 2.2.1.1 --- Cell lines --- p.20 / Chapter 2.2.1.2 --- "Cell culture medium, supplements and buffers" --- p.20 / Chapter 2.2.1.3 --- Gene expression assay reagents --- p.22 / Chapter 2.2.1.4 --- Western blotting reagents --- p.24 / Chapter 2.2.1.5 --- MTT assay reagents --- p.29 / Chapter 2.2.1.6 --- Apoptosis analysis by flow cytometry reagents --- p.29 / Chapter 2.2.2 --- Metho --- p.ds / Chapter 2.2.2.1 --- Cell Culture --- p.31 / Chapter 2.2.2.2 --- MTT assay --- p.32 / Chapter 2.2.2.3 --- Gene expression essay (RT-PCR) --- p.33 / Chapter 2.2.2.4 --- Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of protein lysate and Western blotting --- p.37 / Chapter 2.2.2.5 --- Quantification of doxorubicin uptake by flow cytometry --- p.40 / Chapter 2.2.2.6 --- Apoptosis analysis by flow cytometry --- p.41 / Chapter 2.3 --- Results --- p.4 / Chapter 2.3.1 --- Cytotoxicity of doxorubicin on SA and DX5 cells --- p.43 / Chapter 2.3.2 --- mRNA expression of multidrug resistance related genes in SA and DX5 cells --- p.46 / Chapter 2.3.3 --- P-glycoprotein expression in SA and DX5 cells --- p.49 / Chapter 2.3.4 --- Doxorubicin (Dox) uptake by SA and DX5 cells --- p.51 / Chapter 2.3.5 --- Doxorubicin induced Apoptosis in SA and DX5 cells --- p.54 / Chapter 2.4 --- Discussion --- p.61 / Chapter 2.5 --- Conclusion --- p.65 / Chapter Chapter 3 --- Alternation in P-glycoprotein expression in DX5_Ninjl cells --- p.66 / Chapter 3.1 --- Introduction --- p.67 / Chapter 3.2 --- Materials and Methods / Chapter 3.2.1 --- Materials / Chapter 3.2.1.1 --- Cell lines --- p.70 / Chapter 3.2.1.2 --- "Cell culture medium, supplements and buffers" --- p.70 / Chapter 3.2.1.3 --- Gene expression assay reagents --- p.70 / Chapter 3.2.1.4 --- Western blotting reagents --- p.72 / Chapter 3.2.1.5 --- Plasmid DNA extraction --- p.75 / Chapter 3.2.1.6 --- Transient transfection --- p.76 / Chapter 3.2.1.7 --- MTT reagents --- p.76 / Chapter 3.2.2 --- Methods / Chapter 3.2.2.1 --- Cell culture --- p.78 / Chapter 3.2.2.2 --- Gene expression essay (RT-PCR) --- p.79 / Chapter 3.2.2.3 --- Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of protein lysate and Western blotting --- p.81 / Chapter 3.2.2.4 --- DNA plasmid extraction --- p.83 / Chapter 3.2.2.5 --- Transient transfection --- p.84 / Chapter 3.2.2.6 --- MTT assay --- p.85 / Chapter 3.2.2.7 --- Quantification of doxorubicin (Dox) uptake by flow cytometry --- p.86 / Chapter 3.3 --- Results / Chapter 3.3.1 --- mRNA expression of Ninjurinl (Ninj1) in SA and DX5 cells --- p.87 / Chapter 3.3.2 --- The protein expression of Ninjurinl (Ninj1) in SA and DX5 cells --- p.89 / Chapter 3.3.3 --- Ninjurin1 (Ninj1) cDNA transfection in DX5 cells --- p.91 / Chapter 3.3.4 --- mRNA expression of MDR1 in Ninjurin1-transfected DX5 cells (DX5_Ninjl) --- p.93 / Chapter 3.3.5 --- P-glycoprotein expression in Ninjurin1-transfected DX5 cells --- p.95 / Chapter 3.3.6 --- "Cytotoxicity of doxorubicin (Dox) on DX5 control, DX5 vector control and DX5_Ninjl cells" --- p.97 / Chapter 3.3.7 --- "Doxorubicin (Dox) uptake by SA control, DX5 control and DX5_Ninjl cells" --- p.99 / Chapter 3.4 --- Discussion --- p.102 / Chapter 3.5 --- Conclusion --- p.105 / Chapter Chapter 4 --- Alternation in MDR1 expression in DX5一THBS1 cells --- p.106 / Chapter 4.1 --- Introduction --- p.107 / Chapter 4.2 --- Materials and Methods / Chapter 4.2.1 --- Materials / Chapter 4.2.1.1 --- Cell lines --- p.109 / Chapter 4.2.1.2 --- Cell culture medium; supplements and buffers --- p.109 / Chapter 4.2.1.3 --- Gene expression assay reagents --- p.109 / Chapter 4.2.1.4 --- Western blotting reagents --- p.111 / Chapter 4.2.1.5 --- Plasmid DNA extraction --- p.114 / Chapter 4.2.1.6 --- Transient transfection --- p.115 / Chapter 4.2.1.7 --- MTT reagents --- p.115 / Chapter 4.2.2 --- Methods / Chapter 4.2.2.1 --- Cell culture --- p.117 / Chapter 4.2.2.2 --- Gene expression essay (RT-PCR) --- p.118 / Chapter 4.2.2.3 --- Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of protein lysate and Western blotting --- p.120 / Chapter 4.2.2.4 --- DNA plasmid extraction --- p.123 / Chapter 4.2.2.5 --- Transient transfection --- p.123 / Chapter 4.2.2.6 --- MTT assay --- p.124 / Chapter 4.2.2.7 --- Quantification of doxorubicin (Dox) uptake by flow cytometry --- p.125 / Chapter 4.3 --- Results / Chapter 4.3.1 --- mRNA expression of Thrombospondinl (THBS1) in SA and DX5 cells --- p.126 / Chapter 4.3.2 --- The protein expression of Thrombospondinl (THBS1) in SA and DX5 cells --- p.128 / Chapter 4.3.3 --- Thrombospondinl (THBS1) cDNA transfection in DX5 cells --- p.130 / Chapter 4.3.4 --- mRNA expression of MDR1 in Thrombospondinl-transfected DX5 cells (DX5_THBS1) --- p.132 / Chapter 4.3.5 --- P-glycoprotein expression in Thrombospondinl-transfected DX5 cells --- p.134 / Chapter 4.3.6 --- "Cytotoxicity of doxorubicin (Dox) on DX5 control, DX5 vector control and DX5一THBS1 cells" --- p.136 / Chapter 4.3.7 --- "Doxorubicin (Dox) uptake by SA control, DX5 control and DX5_THBS1 cells" --- p.138 / Chapter 4.4 --- Discussion --- p.141 / Chapter 4.5 --- Conclusion --- p.145 / Chapter Chapter 5 --- General discussion --- p.146 / Chapter 5.1 --- Doxorubicin induced multidrug resistance in human uterin sarcoma cells via upregulation of P-glycoprotein --- p.147 / Chapter 5.2 --- The down-regulation of Ninjurin1 in human uterine sarcoma cells contributed to multidrug resistance --- p.148 / Chapter 5.3 --- The down-regulation of Thrombospondin1 in human uterine sarcoma cells contributed to multidrug resistance --- p.150 / Chapter 5.4 --- Conclusion and Future Perspective --- p.153 / Reference --- p.155

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327525
Date January 2011
ContributorsLeung, Winnie., Chinese University of Hong Kong Graduate School. Division of Biomedical Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiii, 164 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds