Philosophiae Doctor - PhD / A highly dispersive gold nanoparticle-dotted 4-nitrophenylazo functionalised graphene
nanocomposite (AuNp/G/PhNO2) was successfully synthesised and applied in enhancing
sensing platform signals. Three label-free electrochemical immunosensors for the detection of deoxynivalenol mycotoxin (DON) based on the systematic modification of glassy carbon electrodes (GCE) with AuNp/G/PhNO2 was effectively achieved. General electrochemical impedance method was employed for the sensitive and selective detection of DON in standard solutions and reference material samples. A significant increase in charge transfer resistance (Rct) of the sensing interface was observed due to the formation of insulating immune-complexes by the binding of deoxynivalenol antibody (DONab) and deoxynivalenol antigen (DONag). Further attachments of DONab and DONag resulted in increases in the obtained Rct values, and the increases were linearly proportional to the concentration of DONag. The three immunosensors denoted as GCE/PDMA/AuNp/G/PhNH2/DONab, GCE/Nafion/[Ru(bpy)3]2+/AuNp/G/PhNH2/DONab and GCE/Nafion/[Ru(bpy)3]2+/G/PhNH2/DONab have detection range of 6 – 30 ng/mL for DONag in standard samples. Their sensitivity and detection limits were 43.45 ΩL/ng and 1.1 pg/L; 32.14ΩL/ng and 0.3 pg/L; 9.412 ΩL/ng and 1.1 pg/L respectively. This result was better than those reported in the literature and compares reasonably with Enzyme Linked Immunosorbent Assay (ELISA) results. The present sensing methodology represents an attractive alternative to the existing methods for the detection of deoxynivalenol mycotoxin and other big biomolecules of interest due to its simplicity, stability, sensitivity, reproducibility, selectivity, and inexpensive instrumentation. And they could be used to develop high-performance, ultra-sensitive electrochemiluminescence, voltammetric or amperometric sensors as well.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/3361 |
Date | January 2014 |
Creators | Sunday, Christopher Edozie |
Contributors | Iwuoha, Emmanuel, Baker, Priscilla G. L. |
Publisher | University of Western Cape |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | University of Western Cape |
Page generated in 0.002 seconds