Résumé : Depuis la fin du XXème siècle, l’augmentation du prix du pétrole brut et les problématiques environnementales poussent l’industrie automobile à développer des technologies plus économes en carburant et générant moins d’émissions de gaz à effet de serre. Parmi ces technologies, les véhicules électriques hybrides constituent une solution viable et performante. En alliant un moteur électrique et un moteur à combustion, ces véhicules possèdent un fort potentiel de réduction de la consommation de carburant sans sacrifier son autonomie. La présence de deux moteurs et de deux sources d’énergie requiert un contrôleur, appelé système de gestion d’énergie, responsable de la commande simultanée des deux moteurs. Les performances du véhicule en matière de consommation dépendent en partie de la conception de ce contrôleur. Les véhicules électriques hybrides rechargeables, plus récents que leur équivalent non rechargeable, se distinguent par l’ajout d’un chargeur interne permettant la recharge de la batterie pendant l’arrêt du véhicule et par conséquent la décharge de celle-ci au cours d’un trajet. Cette particularité ajoute un degré de complexité pour ce qui est de la conception du système de gestion d’énergie. Dans cette thèse, nous proposons un modèle complet du véhicule dédié à la conception du contrôleur. Nous étudions ensuite la dépendance de la commande optimale des deux moteurs par rapport au profil de vitesse suivi au cours d’un trajet ainsi qu’à la quantité d’énergie électrique disponible au début d’un trajet. Cela nous amène à proposer une technique d’auto-apprentissage visant l’amélioration de la stratégie de gestion d’énergie en exploitant un certain nombre de données enregistrées sur les trajets antérieurs. La technique proposée permet l’adaptation de la stratégie de contrôle vis-à-vis du trajet en cours en se basant sur une pseudo-prédiction de la totalité du profil de vitesse. Nous évaluerons les performances de la technique proposée en matière de consommation de carburant en la comparant avec une stratégie optimale bénéficiant de la connaissance exacte du profil de vitesse ainsi qu’avec une stratégie de base utilisée couramment dans l’industrie. // Abstract : Since the end of the XXth century, the increase in crude oil price and the environmental concerns lead the automotive industry to develop technologies that can improve fuel savings and decrease greenhouse gases emissions. Among these technologies, the hybrid electric vehicles stand as a reliable and efficient solution. By combining an electrical motor and an internal combustion engine, these vehicles can bring a noticeable improvement in terms of fuel consumption without sacrificing the vehicle autonomy. The two motors and the two energy storage systems require a control unit, called energy management system, which is responsible for the command decision of both motors. The vehicle performances in terms of fuel consumption greatly depend on this control unit. The plug-in hybrid electric vehicles are a more recent technology compared to their non plug-in counterparts. They have an extra internal battery charger that allows the battery to be charged during OFF state, implying a possible discharge during a trip. This particularity adds complexity when it comes to the design of the energy management system. In this thesis, a complete vehicle model is proposed and used for the design of the controller. A study is then carried out to show the dependence between the optimal control of the motors and the speed profile followed during a trip as well as the available electrical energy at the beginning of a trip. According to this study, a self-learning optimization technique that aims at improving the energy management strategy by exploiting some driving data recorded on previous trips is proposed. The technique allows the adaptation of the control strategy to the current trip based on a pseudo-prediction of the total speed profile. Fuel consumption performances for the proposed technique will be evaluated by comparing it with an optimal control strategy that benefits from the exact a priori knowledge of the speed profile as well as a basic strategy commonly used in industry.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/5856 |
Date | January 2014 |
Creators | Denis, Nicolas |
Contributors | Dubois, Maxime |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French |
Detected Language | French |
Type | Thèse |
Rights | © Nicolas Denis, Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada, http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ |
Page generated in 0.0021 seconds