La conception d'une stratégie de gestion des flux de puissance au bord des véhicules électriques de puissance moyenne est considérée, dont le système d'alimentation est composé de différentes sources électriques : pile à combustible, batterie et super-condensateur. Chacune des sources est spécialisée à travailler dans une certaine zone fréquentielle, i.e., la pile à combustible fourni sa puissance en bas fréquence, tandis que le super-condensateur jeu son rôle en haute fréquence, la batterie fournissant la parti moyenne fréquence. Le système est bilinéaire ; il est transformé par linéarisation dans un système linéaire à des paramètres variants. A cette fin, nous proposons les techniques de commande multi-variable robuste de type LPV (linear parameter varying)/Hinf afin de spécifier la dynamique du courant de chaque source dans sa zone fréquentielle de préférence, en contribuant ainsi à la prolongation de sa durée de vie. Chaque source électrique est couplée avec un convertisseur DC-DC, les trois convertisseurs étant couplés en parallèle à un bus DC commun qui alimente le moteur électrique du véhicule jouant le rôle de la charge. La tension de ce bus DC doit être maintenue autour une valeur désirée. Les trois sources sont coordonnées pour fournir la puissance demandée par la charge quel que soit le cycle de conduite. Nous proposons également une méthode de réduction model pour simplifier le contrôleur LPV/ Hinf, qui sera adapté à l'implémentation pratique. Le système complet est simulé numériquement sur MATLAB/Simulink et réalisé pratiquement en utilisant deux cycles des conduites : le cycle européen normalisé (NEDC) et un cycle de conduite proposé par IFSTTAR (Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux). / In this thesis the problem of multi-source power sharing strategy within electric vehicles is considered. Three different kinds of power sources { fuel cell, battery and supercapacitor } compose the power supply system, where all sources are current-controlled and paralleled together with their associated DC-DC converters on a common DC-link. The DC-link voltage must be regulated regardless of load variations corresponding to the driving cycle. The proposed strategy is a robust control solution using a MIMO LPV/Hinf controller which provides the three current references with respect to source frequency characteristics. The selection of the weighting functions is guided by a genetic algorithm whose optimization criterion expresses the frequency separation requirements. A reduced-order version of the LPV/Hinf controller is also proposed to handle an embedded implementation with limited computational burden. The nonlinear multi-source system is tested by using two different types of driving cycles: the New European Driving Cycle (NEDC), the driving cycle of IFSTTAR (Institut Francais des Sciences et Technologies des Transports, de l'Amenagement et des Reseaux). Simulation and real-time application results show good performance in supplying the load at constant DC-link voltage according to user-configured frequency-separation power sharing strategy.
Identifer | oai:union.ndltd.org:theses.fr/2015GREAT087 |
Date | 22 October 2015 |
Creators | Nwesaty, Waleed |
Contributors | Grenoble Alpes, Sename, Olivier, Bratcu, Antoneta-Iuliana |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0034 seconds