Neste trabalho de mestrado é estudada a estabilidade de vórtices em condensados de Bose-Einstein com interação atrativa entre os átomos através da solução numérica da equação de Gross-Pitaevskii. Inicialmente são reproduzidos resultados da literatura, nos quais são estudados vórtices em condensados bidimensionais atrativos com potencial interatômico homogêneo em todo o condensado. A estabilidade de tais sistemas é inferida através da solução numérica das equações de Bogoliubov-de Gennes e da evolução temporal dos vórtices. Demonstra-se que esses vórtices são estáveis, até um certo número crítico de átomos, apenas para valores de vorticidade S=1. Em seguida foi proposto um modelo no qual a interação entre os átomos é espacialmente modulada. Neste caso é possível demonstrar que vórtices com valores de vorticidade de até S=6, pelo menos, são estáveis. Finalmente é estudada a estabilidade de vórtices em condensados tridimensionais atrativos, novamente com potencial interatômico homogêneo em todo o condensado. Assim como no caso bidimensional mostra-se que tais vórtices são estáveis para valores de vorticidade de S=1. Espera-se em breve estudar a estabilidade de vórtices em condesados tridimensionais com potencial de interação espacialmente modulado. / In this work we study the stability of vortices in attractive Bose-Einstein condensates by solving numerically the Gross-Pitaevskii equation. Initially we reproduce some results from the literature, in which vortices in two-dimensional attractive Bose-Einstein condensates with homogeneous interatomic potential are studied. The stability of these systems is determined by solving numerically the Bogoliubov-de Gennes equations and by studying the time evolution of these vortices. We demonstrate that these vortices are stable, up to a certain critical number of atoms, just for the value of vorticity S=1. After we propose a model in which the interatomic interaction are spatially modulated. In this case it is possible to verify that vortices with values of vorticity up to S=6 , at least, are stable. Finally, we study the stability of vortices in three-dimensional attractive condensates, again with a homogeneous interatomic potential. As in the two-dimensional case, we show that vortices in these systems are stable to values of vorticity S=1. The next step in this work is study the stability of vortices in three-dimensional condensates with spatially modulated interatomic interaction.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-12052016-171955 |
Date | 26 April 2016 |
Creators | Henrique Fabrelli Ferreira |
Contributors | Arnaldo Gammal, Emanuel Alves de Lima Henn, Valery Shchesnovich |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds