Nous présentons et étudions des méthodes d’apprentissage non-supervisé de phénomènes extrêmes multivariés en grande dimension. Dans le cas où chacune des distributions marginales d’un vecteur aléatoire est à queue lourde, l’étude de son comportement dans les régions extrêmes (i.e. loin de l’origine) ne peut plus se faire via les méthodes usuelles qui supposent une moyenne et une variance finies. La théorie des valeurs extrêmes offre alors un cadre adapté à cette étude, en donnant notamment une base théorique à la réduction de dimension à travers la mesure angulaire. La thèse s’articule autour de deux grandes étapes : - Réduire la dimension du problème en trouvant un résumé de la structure de dépendance dans les régions extrêmes. Cette étape vise en particulier à trouver les sous-groupes de composantes étant susceptible de dépasser un seuil élevé de façon simultané. - Modéliser la mesure angulaire par une densité de mélange qui suit une structure de dépendance déterminée à l’avance. Ces deux étapes permettent notamment de développer des méthodes de classification non-supervisée à travers la construction d’une matrice de similarité pour les points extrêmes. / We present and study unsupervised learning methods of multivariate extreme phenomena in high-dimension. Considering a random vector on which each marginal is heavy-tailed, the study of its behavior in extreme regions is no longer possible via usual methods that involve finite means and variances. Multivariate extreme value theory provides an adapted framework to this study. In particular it gives theoretical basis to dimension reduction through the angular measure. The thesis is divided in two main part: - Reduce the dimension by finding a simplified dependence structure in extreme regions. This step aim at recover subgroups of features that are likely to exceed large thresholds simultaneously. - Model the angular measure with a mixture distribution that follows a predefined dependence structure. These steps allow to develop new clustering methods for extreme points in high dimension.
Identifer | oai:union.ndltd.org:theses.fr/2018ENST0035 |
Date | 28 June 2018 |
Creators | Chiapino, Maël |
Contributors | Paris, ENST, Roueff, François, Sabourin, Anne |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.1193 seconds