Advances in optical imaging have provided methods for visualizing molecular expression in tumors in vivo, allowing the opportunity to study the complexity of the tumor microenvironment. The development of fluorescent contrast agents targeted to molecules expressed in cancer cells is critical for in vivo imaging of the tumors. Contrast agents emitting in the near infrared (NIR) allow for an increased depth of penetration in tissue due to decreased absorption and scattering. There is also significantly less autofluorescence from tissue in the NIR. Quantum dots are nanoscopic particles of semiconductors whose fluorescent emission wavelength is tunable by the size of the particle with desirable fluorescent qualities such as a wide range of excitation wavelengths, a narrow emission band, high quantum efficiency, high photostablility, and they can be produced to emit throughout the NIR imaging window. It has been shown that vascular endothelial growth factor receptor 2 (VEGFR2) is upregulated in many cancers, including colorectal, as it is important in tumor angiogenesis and is considered a predictor for clinical outcome and, in some instances, is used for targeted therapy with anti-angiogenic drugs. For these reasons, quantum dots bioconjugated to VEGFR2 antibodies have the potential to provide contrast between normal tissue and cancer, as well as a mechanism for evaluating the molecular changes associated with cancer in vivo. In this dissertation, we present on the design of two contrast agents using quantum dots targeted to VEGFR2 for use in the molecular imaging of colon cancer, both ex vivo and in vivo. First, as a preliminary ex vivo investigation into their efficacy, Qdot655® (655nm emission) were bioconjugated to anti-VEGFR2 antibodies through streptavidin/biotin linking. The resulting QD655-VEGFR2 contrast agent was used to label colon adenoma in vivo and imaged ex vivo with significant increase in contrast between diseased and undiseased tissue, allowing for fluorescence based visualization of the VEGFR2 expressing diseased areas of the colon with high sensitivity and specificity. Then, QD655-VEGFR2 was used in a longitudinal in vivo study to investigate ability to correlate fluorescence signal to tumor development over time using optical coherence tomography and laser induced fluorescence spectroscopy (OCT/LIF) dual-modality imaging. The contrast agent was able to target VGEFR2 expressing diseased areas of colon; however, challenges in fully flushing the unbound contrast agent from the colon before imaging arise when moving from ex vivo imaging to in vivo image. Lastly, lead sulfide (PbS) quantum dots were made by colloidal synthesis to emit at a 940 nm (QD940) and conjugated to anti-VEGFR2 primary antibodies through streptavidin/biotin linking. The resulting QD940-VEGFR2 contrast agent was then used to label cells in vitro. The QD940-VEGFR2 molecules were able to positively label VEGFR2 expressing cells and did not label VEGFR2 negative cells. Very low photoluminescence and large amounts of aggregation after conjugation of the quantum dot to streptavidin was detected. Improvements to the quantum dot stability through synthesis, capping and conjugation techniques must be made for this contrast agent to be effective as a contrast agent for cancer imaging.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/565917 |
Date | January 2015 |
Creators | Carbary, Jordan Leslie |
Contributors | Utzinger, Urs, Utzinger, Urs, Barton, Jennifer K., Romanowski, Marek, Lynch, Ronald |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0022 seconds